An infinite-horizon stochastic discrete-time Pontryagin principle

被引:5
|
作者
Blot, Joel [1 ]
机构
[1] Univ Paris 01, Lab Marin Mersenne, F-75013 Paris, France
关键词
Infinite-horizon optimal control; Discrete time; Stochastic Pontryagin principle;
D O I
10.1016/j.na.2009.01.063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to establish a Pontryagin principle for a stochastic infinite-horizon discrete-time optimal control problem governed by a difference inequation. We use a setting used by Arkin and Evstigneev and we extend their finite-horizon result to the infinite-horizon framework. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:E999 / E1004
页数:6
相关论文
共 50 条
  • [21] Lightenings of Assumptions for Pontryagin Principles in Infinite Horizon and Discrete Time
    Joël Blot
    Thoi-Nhan Ngo
    Journal of Optimization Theory and Applications, 2017, 172 : 351 - 368
  • [22] DISCRETE-TIME FINITE-HORIZON APPROXIMATION OF INFINITE-HORIZON OPTIMIZATION PROBLEMS WITH STEADY-STATE INVARIANCE
    MERCENIER, J
    MICHEL, P
    ECONOMETRICA, 1994, 62 (03) : 635 - 656
  • [23] Infinite-horizon deterministic dynamic programming in discrete time: a monotone convergence principle and a penalty method
    Kamihigashi, Takashi
    Yao, Masayuki
    OPTIMIZATION, 2016, 65 (10) : 1899 - 1908
  • [24] Guaranteed-cost prediction of discrete-time systems: The finite- and infinite-horizon case
    Bolzern, P
    Colaneri, P
    De Nicolao, G
    ROBUST CONTROL DESIGN (ROCODN'97): A PROCEEDINGS VOLUME FROM THE IFAC SYMPOSIUM, 1997, : 431 - 436
  • [25] An Improved Method for Approximating the Infinite-Horizon Value Function of the Discrete-Time Switched LQR Problem
    Tan Hou
    Yuanlong Li
    Zongli Lin
    Journal of Systems Science and Complexity, 2024, 37 : 22 - 39
  • [26] An Improved Method for Approximating the Infinite-Horizon Value Function of the Discrete-Time Switched LQR Problem
    HOU Tan
    LI Yuanlong
    LIN Zongli
    JournalofSystemsScience&Complexity, 2024, 37 (01) : 22 - 39
  • [27] An Improved Method for Approximating the Infinite-Horizon Value Function of the Discrete-Time Switched LQR Problem
    Hou, Tan
    Li, Yuanlong
    Lin, Zongli
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2024, 37 (01) : 22 - 39
  • [28] An Improved Method for Approximating the Infinite-horizon Value Function of the Discrete-time Switched LQR Problem
    Hou, Tan
    Li, Yuanlong
    Lin, Zongli
    IFAC PAPERSONLINE, 2023, 56 (02): : 4138 - 4143
  • [29] Indeterminacy in discrete-time infinite-horizon models with non-linear utility and endogenous labor
    Nishimura, Kazuo
    Venditti, Alain
    JOURNAL OF MATHEMATICAL ECONOMICS, 2007, 43 (3-4) : 446 - 476
  • [30] Infinite horizon indefinite stochastic linear quadratic control for discrete-time systems
    Weihai ZHANG
    Yan LI
    Xikui LIU
    Control Theory and Technology, 2015, 13 (03) : 230 - 237