An infinite-horizon stochastic discrete-time Pontryagin principle

被引:5
|
作者
Blot, Joel [1 ]
机构
[1] Univ Paris 01, Lab Marin Mersenne, F-75013 Paris, France
关键词
Infinite-horizon optimal control; Discrete time; Stochastic Pontryagin principle;
D O I
10.1016/j.na.2009.01.063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to establish a Pontryagin principle for a stochastic infinite-horizon discrete-time optimal control problem governed by a difference inequation. We use a setting used by Arkin and Evstigneev and we extend their finite-horizon result to the infinite-horizon framework. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:E999 / E1004
页数:6
相关论文
共 50 条
  • [31] INFINITE HORIZON LINEAR QUADRATIC OPTIMAL CONTROL FOR DISCRETE-TIME STOCHASTIC SYSTEMS
    Huang, Yulin
    Zhang, Weihai
    Zhang, Huanshui
    ASIAN JOURNAL OF CONTROL, 2008, 10 (05) : 608 - 615
  • [32] Infinite horizon indefinite stochastic linear quadratic control for discrete-time systems
    Zhang W.
    Li Y.
    Liu X.
    Control Theory and Technology, 2015, 13 (03) : 230 - 237
  • [33] Infinite horizon linear quadratic differential games for discrete-time stochastic systems
    Sun H.
    Jiang L.
    Zhang W.
    Journal of Control Theory and Applications, 2012, 10 (03): : 391 - 396
  • [34] Discrete-time indefinite stochastic LQ optimal control: Infinite horizon case
    Qi, Jun-Jun
    Zhang, Wei-Hai
    Zidonghua Xuebao/ Acta Automatica Sinica, 2009, 35 (05): : 613 - 617
  • [35] NONSMOOTH MAXIMUM PRINCIPLE FOR INFINITE-HORIZON PROBLEMS
    YE, JJ
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1993, 76 (03) : 485 - 500
  • [36] Infinite-horizon Linear Quadratic Optimal Control for Discrete-time LTI Systems with Random Input Gains
    Zheng, Jianying
    Qiu, Li
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 1195 - 1200
  • [37] A discrete-time Pontryagin maximum principle on matrix Lie groups
    Phogat, Karmvir Singh
    Chatterjee, Debasish
    Banavar, Ravi N.
    AUTOMATICA, 2018, 97 : 376 - 391
  • [38] FEEDBACK AND OPEN-LOOP NASH EQUILIBRIA FOR LQ INFINITE-HORIZON DISCRETE-TIME DYNAMIC GAMES
    Monti, Andrea
    Nortmann, Benita
    Mylvaganam, Thulasi
    Sassano, Mario
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2024, 62 (03) : 1417 - 1436
  • [39] Infinite-Horizon Joint LQG Synthesis of Switching and Feedback in Discrete Time
    Lee, Ji-Woong
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (08) : 1945 - 1951
  • [40] Linear Infinite Horizon Quadratic Differential Games for Stochastic Systems: Discrete-Time Case
    Sun, Huiying
    Jiang, Liuyang
    2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 1733 - 1737