Infinite-horizon deterministic dynamic programming in discrete time: a monotone convergence principle and a penalty method

被引:0
|
作者
Kamihigashi, Takashi [1 ]
Yao, Masayuki [2 ]
机构
[1] Kobe Univ, RIEB, Kobe, Hyogo, Japan
[2] Keio Univ, Dept Econ, Tokyo, Japan
基金
日本学术振兴会;
关键词
Dynamic programming; Bellman operator; fixed point; value iteration; penalty method; BELLMAN EQUATION; UNBOUNDED RETURNS; FIXED-POINT; UNIQUENESS; EXISTENCE;
D O I
10.1080/02331934.2016.1193737
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider infinite-horizon deterministic dynamic programming problems in discrete time. We show that the value function of such a problem is always a fixed point of a modified version of the Bellman operator. We also show that value iteration converges increasingly to the value function if the initial function is dominated by the value function, is mapped upward by the modified Bellman operator and satisfies a transversality-like condition. These results require no assumption except for the general framework of infinite-horizon deterministic dynamic programming. As an application, we show that the value function can be approximated by computing the value function of an unconstrained version of the problem with the constraint replaced by a penalty function.
引用
收藏
页码:1899 / 1908
页数:10
相关论文
共 50 条