Fractional Ginzburg-Landau equation for fractal media

被引:166
|
作者
Tarasov, VE [1 ]
Zaslavsky, GM
机构
[1] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119992, Russia
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[3] NYU, Dept Phys, New York, NY 10003 USA
基金
美国国家科学基金会;
关键词
fractional equation; fractional derivatives and integrals fractal medium; Ginzburg-Landau equation;
D O I
10.1016/j.physa.2005.02.047
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive the fractional generalization of the Ginzburg-Landau equation from the variational Euler-Lagrange equation for fractal media. To describe fractal media we use the fractional integrals considered as approximations of integrals on fractals. Some simple solutions of the Ginzburg-Landau equation for fractal media are considered and different forms of the fractional Ginzburg-Landau equation or nonlinear Schrodinger equation with fractional derivatives are presented. The Agrawal variational principle and its generalization have been applied. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:249 / 261
页数:13
相关论文
共 50 条