Fractional Ginzburg-Landau equation for fractal media

被引:166
|
作者
Tarasov, VE [1 ]
Zaslavsky, GM
机构
[1] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119992, Russia
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[3] NYU, Dept Phys, New York, NY 10003 USA
基金
美国国家科学基金会;
关键词
fractional equation; fractional derivatives and integrals fractal medium; Ginzburg-Landau equation;
D O I
10.1016/j.physa.2005.02.047
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive the fractional generalization of the Ginzburg-Landau equation from the variational Euler-Lagrange equation for fractal media. To describe fractal media we use the fractional integrals considered as approximations of integrals on fractals. Some simple solutions of the Ginzburg-Landau equation for fractal media are considered and different forms of the fractional Ginzburg-Landau equation or nonlinear Schrodinger equation with fractional derivatives are presented. The Agrawal variational principle and its generalization have been applied. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:249 / 261
页数:13
相关论文
共 50 条
  • [21] GINZBURG-LANDAU EQUATION AND NONLINEAR DYNAMICS OF NONEQUILIBRIUM MEDIA.
    Gaponov-Grekhov, A.V.
    Rabinovich, M.I.
    Radiophysics and quantum electronics, 1987, 30 (02) : 93 - 102
  • [22] An unconditionally stable linearized difference scheme for the fractional Ginzburg-Landau equation
    He, Dongdong
    Pan, Kejia
    NUMERICAL ALGORITHMS, 2018, 79 (03) : 899 - 925
  • [23] Innovative solutions and sensitivity analysis of a fractional complex Ginzburg-Landau equation
    Leta, Temesgen Desta
    Chen, Jingbing
    El Achab, Abdelfattah
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (10)
  • [24] Generalized Ginzburg-Landau equation and the properties of superconductors with Ginzburg-Landau parameter κ close to 1
    Yu. N. Ovchinnikov
    Journal of Experimental and Theoretical Physics, 1999, 88 : 398 - 405
  • [25] Dynamics of the 3-D fractional complex Ginzburg-Landau equation
    Lu, Hong
    Bates, Peter W.
    Lu, Shujuan
    Zhang, Mingji
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (10) : 5276 - 5301
  • [26] Well-posedness of fractional Ginzburg-Landau equation in Sobolev spaces
    Li, Jingna
    Xia, Li
    APPLICABLE ANALYSIS, 2013, 92 (05) : 1074 - 1084
  • [27] Dynamics of Fractional Stochastic Ginzburg-Landau Equation Driven by Nonlinear Noise
    Lu, Hong
    Wang, Linlin
    Zhang, Mingji
    MATHEMATICS, 2022, 10 (23)
  • [28] Generalized Ginzburg-Landau equation and the properties of superconductors with Ginzburg-Landau parameter κ close to 1
    Ovchinnikov, YN
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 1999, 88 (02) : 398 - 405
  • [29] An unconditionally stable linearized difference scheme for the fractional Ginzburg-Landau equation
    Dongdong He
    Kejia Pan
    Numerical Algorithms, 2018, 79 : 899 - 925
  • [30] Galerkin finite element method for the nonlinear fractional Ginzburg-Landau equation
    Li, Meng
    Huang, Chengming
    Wang, Nan
    APPLIED NUMERICAL MATHEMATICS, 2017, 118 : 131 - 149