Boundedness of solutions to Ginzburg-Landau fractional Laplacian equation

被引:15
|
作者
Ma, Li [1 ,2 ]
机构
[1] Henan Normal Univ, Zhongyuan Inst Math, Xinxiang 453007, Peoples R China
[2] Henan Normal Univ, Dept Math, Xinxiang 453007, Peoples R China
基金
中国国家自然科学基金;
关键词
Kato inequality; Ginzburg-Landau model; fractional Laplacian equation;
D O I
10.1142/S0129167X16500488
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give the boundedness of solutions to Ginzburg-Landau fractional Laplacian equation, which extends the Herve-Herve theorem into the nonlinear fractional Laplacian equation. We follow Brezis' idea to use the Kato inequality. A related linear fractional Schrodinger equation is also studied.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] New Exact Solutions of the Fractional Complex Ginzburg-Landau Equation
    Huang, Chun
    Li, Zhao
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [2] Ginzburg-Landau equation with fractional Laplacian on a upper- right quarter plane
    Carreno-Diaz, J. F.
    Kaikina, E., I
    NONLINEARITY, 2024, 37 (07)
  • [3] FRONT SOLUTIONS FOR THE GINZBURG-LANDAU EQUATION
    ECKMANN, JP
    GALLAY, T
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 152 (02) : 221 - 248
  • [4] Lq solutions to the Ginzburg-Landau equation
    Gutiérrez, S
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 307 - 309
  • [5] Innovative solutions and sensitivity analysis of a fractional complex Ginzburg-Landau equation
    Leta, Temesgen Desta
    Chen, Jingbing
    El Achab, Abdelfattah
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (10)
  • [6] A Liouville theorem for the fractional Ginzburg-Landau equation
    Li, Yayun
    Chen, Qinghua
    Lei, Yutian
    COMPTES RENDUS MATHEMATIQUE, 2020, 358 (06) : 727 - 731
  • [7] Fractional Ginzburg-Landau equation for fractal media
    Tarasov, VE
    Zaslavsky, GM
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 354 : 249 - 261
  • [8] High-dimensional nonlinear Ginzburg-Landau equation with fractional Laplacian: Discretization and simulations
    Du, Rui
    Wang, Yanyan
    Hao, Zhaopeng
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 102
  • [9] A remark on multiplicity of solutions for the Ginzburg-Landau equation
    Zhou, F
    Zhou, Q
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1999, 16 (02): : 255 - 267
  • [10] Small energy solutions to the Ginzburg-Landau equation
    Bethuel, F
    Brezis, H
    Orlandi, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (10): : 763 - 770