A novel variational approach for fractal ginzburg-landau equation

被引:0
|
作者
Wang, Kang-Le [1 ]
Wang, Hao [2 ]
机构
[1] School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo, China
[2] School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, China
来源
Fractals | 2021年 / 29卷 / 07期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] A NOVEL VARIATIONAL APPROACH FOR FRACTAL GINZBURG-LANDAU EQUATION
    Wang, Kang-Le
    Wang, Hao
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (07)
  • [2] A novel variational approach to pulsating solitons in the cubic-quintic Ginzburg-Landau equation
    Mancas, S. C.
    Choudhury, S. R.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 152 (02) : 1160 - 1172
  • [3] Fractional Ginzburg-Landau equation for fractal media
    Tarasov, VE
    Zaslavsky, GM
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 354 : 249 - 261
  • [4] A novel variational approach to pulsating solitons in the cubic-quintic Ginzburg-Landau equation
    S. C. Mancas
    S. R. Choudhury
    Theoretical and Mathematical Physics, 2007, 152 : 1160 - 1172
  • [5] Equilibrium states of a variational formulation for the Ginzburg-Landau equation
    Kulikov, A. N.
    Kulikov, D. A.
    VI INTERNATIONAL CONFERENCE PROBLEMS OF MATHEMATICAL PHYSICS AND MATHEMATICAL MODELLING, 2017, 937
  • [6] THE GINZBURG-LANDAU EQUATION
    ADOMIAN, G
    MEYERS, RE
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 29 (03) : 3 - 4
  • [7] Controllability of the Ginzburg-Landau equation
    Rosier, Lionel
    Zhang, Bing-Yu
    COMPTES RENDUS MATHEMATIQUE, 2008, 346 (3-4) : 167 - 172
  • [8] Variational reduction for Ginzburg-Landau vortices
    del Pino, Manuel
    Kowalczyk, Michal
    Musso, Monica
    JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 239 (02) : 497 - 541
  • [9] A NOVEL METHOD FOR SIMULATING THE COMPLEX GINZBURG-LANDAU EQUATION
    GOLDMAN, D
    SIROVICH, L
    QUARTERLY OF APPLIED MATHEMATICS, 1995, 53 (02) : 315 - 333
  • [10] The time dependent Ginzburg-Landau equation in fractal space-time
    Buzea, C. Gh.
    Rusu, I.
    Bulancea, V.
    Badarau, Gh.
    Paun, V. P.
    Agop, M.
    PHYSICS LETTERS A, 2010, 374 (27) : 2757 - 2765