Groups of two-braid virtual knots

被引:3
|
作者
Kanenobu, Taizo [1 ]
Tsuji, Kazunori [1 ]
机构
[1] Osaka City Univ, Dept Math, Sumiyoshi Ku, Osaka 5588585, Japan
基金
日本学术振兴会;
关键词
virtual knot; knot group; commutator subgroup; ribbon torus knot; higher dimensional knot group; bracket polynomial; Jones polynomial; Sawollek polynomial;
D O I
10.1142/S0218216507005476
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Giving a presentation of the group of a 2-braid virtual knot or link, we consider the groups of three families of 2-braid virtual knots. Each of them has a certain feature; for example, we can show: for any positive integer N, there exists a virtual knot group with an element of order N. It is known that the collection of the virtual knot groups is the same as that of the ribbon T-2-knot groups. Using our examples we discuss the relationship among the virtual knot groups and other knot groups such as ribbon S-2-knot groups, S-2-knot groups, T-2-knot groups, and S-3-knot groups.
引用
收藏
页码:671 / 697
页数:27
相关论文
共 50 条
  • [1] Braid presentation of virtual knots and welded knots
    Kamada, Sechi
    OSAKA JOURNAL OF MATHEMATICS, 2007, 44 (02) : 441 - 458
  • [2] The braid groups, knots and algebraic geometry
    Birman, JS
    Teicher, M
    TOPOLOGY AND ITS APPLICATIONS, 1997, 78 (1-2) : 1 - 4
  • [3] Virtual braid groups, virtual twin groups and crystallographic groups
    Junior, Paulo Cesar Cerqueira Dos Santos
    Ocampo, Oscar
    JOURNAL OF ALGEBRA, 2023, 632 : 567 - 601
  • [4] Stabilization in the braid groups II: Transversal simplicity of knots
    Birman, Joan S.
    Menasco, William W.
    GEOMETRY & TOPOLOGY, 2006, 10 : 1425 - 1452
  • [5] Virtual planar braid groups and permutations
    Naik, Tushar Kanta
    Nanda, Neha
    Singh, Mahender
    JOURNAL OF GROUP THEORY, 2024, 27 (03) : 443 - 483
  • [6] DYNNIKOV COORDINATES ON VIRTUAL BRAID GROUPS
    Bardakov, Valeriy G.
    Vesnin, Andrei Yu.
    Wiest, Bert
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2012, 21 (05)
  • [7] Alexander groups of long virtual knots
    Silver, DS
    Williams, SG
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2006, 15 (01) : 43 - 52
  • [8] Virtual and universal braid groups, their quotients and representations
    Bardakov, Valeriy
    Emel'yanenkov, Ivan
    Ivanov, Maxim
    Kozlovskaya, Tatyana
    Nasybullov, Timur
    Vesnin, Andrei
    JOURNAL OF GROUP THEORY, 2022, 25 (04) : 679 - 712
  • [9] Lifting Theorem for the Virtual Pure Braid Groups
    Bardakov, Valeriy G.
    Wu, Jie
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2025, 46 (01) : 85 - 114
  • [10] Groups of the virtual trefoil and Kishino knots
    Bardakov, Valeriy G.
    Mikhalchishina, Yuliya A.
    Neshchadim, Mikhail, V
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2018, 27 (13)