Virtual planar braid groups and permutations

被引:2
|
作者
Naik, Tushar Kanta [1 ]
Nanda, Neha [2 ]
Singh, Mahender [3 ]
机构
[1] Indian Inst Sci Educ & Res IISER Mohali, Dept Math Sci, Sect 81,PO Manauli, Sas Nagar 140306, Punjab, India
[2] HBNI, Natl Inst Sci Educ & Res, Sch Math Sci, PO Jatni, Khurja 752050, Odisha, India
[3] Indian Inst Sci Educ & Res IISER Bhopal, Dept Math Sci, Bhopal Bypass Rd, Bhopal 462066, Madhya Pradesh, India
关键词
TWIN;
D O I
10.1515/jgth-2023-0010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Twin groups and virtual twin groups are planar analogues of braid groups and virtual braid groups, respectively. These groups play the role of braid groups in the Alexander-Markov correspondence for the theory of stable isotopy classes of immersed circles on orientable surfaces. Motivated by the general idea of Artin and recent work of Bellingeri and Paris [P. Bellingeri and L. Paris, Virtual braids and permutations, Ann. Inst. Fourier (Grenoble) 70 (2020), no. 3, 1341-1362], we obtain a complete description of homomorphisms between virtual twin groups and symmetric groups, which as an application gives us the precise structure of the automorphism group of the virtual twin group VTn on n >= 2 strands. This is achieved by showing the existence of an irreducible right-angled Coxeter group KTn inside VTn. As a by-product, it also follows that the twin group T-n embeds inside the virtual twin group VTn, which is an analogue of a similar result for braid groups.
引用
收藏
页码:443 / 483
页数:41
相关论文
共 50 条
  • [1] Virtual braid groups, virtual twin groups and crystallographic groups
    Junior, Paulo Cesar Cerqueira Dos Santos
    Ocampo, Oscar
    JOURNAL OF ALGEBRA, 2023, 632 : 567 - 601
  • [2] Lower central series, surface braid groups, surjections and permutations
    Bellingeri, Paolo
    Goncalves, Daciberg Lima
    Guaschi, John
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2022, 172 (02) : 373 - 399
  • [3] DYNNIKOV COORDINATES ON VIRTUAL BRAID GROUPS
    Bardakov, Valeriy G.
    Vesnin, Andrei Yu.
    Wiest, Bert
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2012, 21 (05)
  • [4] On the second homology of planar graph braid groups
    An, Byung Hee
    Knudsen, Ben
    JOURNAL OF TOPOLOGY, 2022, 15 (02) : 666 - 691
  • [5] Virtual and universal braid groups, their quotients and representations
    Bardakov, Valeriy
    Emel'yanenkov, Ivan
    Ivanov, Maxim
    Kozlovskaya, Tatyana
    Nasybullov, Timur
    Vesnin, Andrei
    JOURNAL OF GROUP THEORY, 2022, 25 (04) : 679 - 712
  • [6] Groups of two-braid virtual knots
    Kanenobu, Taizo
    Tsuji, Kazunori
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2007, 16 (06) : 671 - 697
  • [7] Lifting Theorem for the Virtual Pure Braid Groups
    Bardakov, Valeriy G.
    Wu, Jie
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2025, 46 (01) : 85 - 114
  • [8] Commutator subgroups of virtual and welded braid groups
    Bardakov, Valeriy G.
    Gongopadhyay, Krishnendu
    Neshchadim, Mikhail, V
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2019, 29 (03) : 507 - 533
  • [9] The unrestricted virtual braid groups UV Bn
    Makri, Stavroula
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2022, 31 (12)
  • [10] Unrestricted virtual braids and crystallographic braid groups
    Bellingeri, Paolo
    Guaschi, John
    Makri, Stavroula
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (03):