Integrable LCK manifolds

被引:0
|
作者
Cappelletti-Montano, Beniamino [1 ]
De Nicola, Antonio [2 ]
Yudin, Ivan [3 ]
机构
[1] Univ Cagliari, Dipartimento Matemat & Informat, Via Osped 72, I-09124 Cagliari, Italy
[2] Univ Salerno, Dipartimento Matemat, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy
[3] Univ Coimbra CMUC, Dept Math, P-3001501 Coimbra, Portugal
关键词
Locally conformal Kahler; Inoue surface; LCK Lie algebra; LOCALLY CONFORMAL KAHLER; LATTICES;
D O I
10.1007/s10455-021-09821-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a natural class of LCK manifolds that we call integrable LCK manifolds: those where the anti-Lee form eta corresponds to an integrable distribution. As an application we obtain a characterization of unimodular integrable LCK Lie algebras as Kahler Lie algebras equipped with suitable derivations.
引用
收藏
页码:479 / 497
页数:19
相关论文
共 50 条
  • [1] Integrable LCK manifolds
    Beniamino Cappelletti-Montano
    Antonio De Nicola
    Ivan Yudin
    Annals of Global Analysis and Geometry, 2022, 61 : 479 - 497
  • [2] BIMEROMORPHIC GEOMETRY OF LCK MANIFOLDS
    Ornea, Liviu
    Verbitsky, Misha
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (02) : 701 - 707
  • [3] LVM Manifolds and lck Metrics
    Faucard, Bastien
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (05)
  • [4] Compact homogeneous lcK manifolds are Vaisman
    Paul Gauduchon
    Andrei Moroianu
    Liviu Ornea
    Mathematische Annalen, 2015, 361 : 1043 - 1048
  • [5] LCK metrics on toric LCS manifolds
    Istrati, Nicolina
    JOURNAL OF GEOMETRY AND PHYSICS, 2020, 149
  • [6] Algebraic cones of LCK manifolds with potential
    Ornea, Liviu
    Verbitsky, Misha
    JOURNAL OF GEOMETRY AND PHYSICS, 2024, 198
  • [7] Conformal vector fields on lcK manifolds
    Moroianu, Andrei
    Pilca, Mihaela
    MATHEMATICAL RESEARCH LETTERS, 2023, 30 (05) : 1591 - 1608
  • [8] LEE CLASSES ON LCK MANIFOLDS WITH POTENTIAL
    Ornea, Liviu
    Verbitsky, Misha
    TOHOKU MATHEMATICAL JOURNAL, 2024, 76 (01) : 105 - 125
  • [9] Compact homogeneous lcK manifolds are Vaisman
    Gauduchon, Paul
    Moroianu, Andrei
    Ornea, Liviu
    MATHEMATISCHE ANNALEN, 2015, 361 (3-4) : 1043 - 1048
  • [10] Compact lcK manifolds with parallel vector fields
    Moroianu, Andrei
    COMPLEX MANIFOLDS, 2015, 2 (01): : 26 - 33