Integrable LCK manifolds

被引:0
|
作者
Cappelletti-Montano, Beniamino [1 ]
De Nicola, Antonio [2 ]
Yudin, Ivan [3 ]
机构
[1] Univ Cagliari, Dipartimento Matemat & Informat, Via Osped 72, I-09124 Cagliari, Italy
[2] Univ Salerno, Dipartimento Matemat, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy
[3] Univ Coimbra CMUC, Dept Math, P-3001501 Coimbra, Portugal
关键词
Locally conformal Kahler; Inoue surface; LCK Lie algebra; LOCALLY CONFORMAL KAHLER; LATTICES;
D O I
10.1007/s10455-021-09821-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a natural class of LCK manifolds that we call integrable LCK manifolds: those where the anti-Lee form eta corresponds to an integrable distribution. As an application we obtain a characterization of unimodular integrable LCK Lie algebras as Kahler Lie algebras equipped with suitable derivations.
引用
收藏
页码:479 / 497
页数:19
相关论文
共 50 条
  • [21] MANIFOLDS WITH INTEGRABLE AFFINE SHAPE OPERATOR
    Joaquin, Daniel A.
    MATEMATICHE, 2005, 60 (01): : 13 - 27
  • [22] Embedding of LCK Manifolds with Potential into Hopf Manifolds Using Riesz-Schauder Theorem
    Ornea, Liviu
    Verbitsky, Misha
    COMPLEX AND SYMPLECTIC GEOMETRY, 2017, 21 : 137 - 148
  • [23] Integrable systems and the topology of isospectral manifolds
    A. V. Penskoi
    Theoretical and Mathematical Physics, 2008, 155 : 627 - 632
  • [24] Isoenergetic Manifolds of Integrable Billiard Books
    Kharcheva, I. S.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2020, 75 (04) : 149 - 160
  • [25] Integrable Geodesic Flows on Riemannian Manifolds
    A. V. Bolsinov
    Journal of Mathematical Sciences, 2004, 123 (4) : 4185 - 4197
  • [26] Examples of integrable and non-integrable systems on singular symplectic manifolds
    Delshams, Amadeu
    Kiesenhofer, Anna
    Miranda, Eva
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 115 : 89 - 97
  • [27] Do products of compact complex manifolds admit LCK metrics?
    Ornea, Liviu
    Verbitsky, Misha
    Vuletescu, Victor
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (02) : 756 - 766
  • [28] Commutative partially integrable systems on Poisson manifolds
    Kurov, A. V.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2016, 71 (04) : 375 - 380
  • [29] Separation of variables for integrable systems on Poisson manifolds
    Tsiganov, AV
    PHYSICS OF ATOMIC NUCLEI, 2002, 65 (06) : 1128 - 1134
  • [30] Commutative partially integrable systems on Poisson manifolds
    A. V. Kurov
    Moscow University Physics Bulletin, 2016, 71 : 375 - 380