Integrable LCK manifolds

被引:0
|
作者
Cappelletti-Montano, Beniamino [1 ]
De Nicola, Antonio [2 ]
Yudin, Ivan [3 ]
机构
[1] Univ Cagliari, Dipartimento Matemat & Informat, Via Osped 72, I-09124 Cagliari, Italy
[2] Univ Salerno, Dipartimento Matemat, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy
[3] Univ Coimbra CMUC, Dept Math, P-3001501 Coimbra, Portugal
关键词
Locally conformal Kahler; Inoue surface; LCK Lie algebra; LOCALLY CONFORMAL KAHLER; LATTICES;
D O I
10.1007/s10455-021-09821-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a natural class of LCK manifolds that we call integrable LCK manifolds: those where the anti-Lee form eta corresponds to an integrable distribution. As an application we obtain a characterization of unimodular integrable LCK Lie algebras as Kahler Lie algebras equipped with suitable derivations.
引用
收藏
页码:479 / 497
页数:19
相关论文
共 50 条
  • [41] Integrable hierarchies associated to infinite families of Frobenius manifolds
    Basalaev, Alexey
    Dunin-Barkowski, Petr
    Natanzon, Sergey
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (11)
  • [42] Integrable systems from maps between Poisson manifolds
    Musso, F.
    Ballesteros, A.
    Blasco, A.
    XX INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS, 2012, 1460 : 211 - 215
  • [43] Frobenius manifolds, integrable hierarchies and minimal Liouville gravity
    Belavin, A. A.
    Belavin, V. A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (09):
  • [44] Integrable Poisson algebras and two-dimensional manifolds
    Albeverio, S
    Fei, SM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (04): : 1211 - 1218
  • [45] Manifolds of infinite topological type with integrable geodesic flows
    Leo T. Butler
    manuscripta mathematica, 2005, 116 : 99 - 113
  • [46] Degenerate invariant manifolds of some completely integrable systems
    Médan, C
    MATHEMATISCHE ZEITSCHRIFT, 1999, 232 (04) : 665 - 689
  • [47] Nondegenerate integrable contact systems on 3-manifolds.
    Balde, Moussa
    Sambou, Salomon
    Mbacke Diop, El Hadj Cheikh
    COMPTES RENDUS MATHEMATIQUE, 2006, 343 (11-12) : 751 - 754
  • [48] Semitoric integrable systems on symplectic 4-manifolds
    Pelayo, Alvaro
    Ngoc, San Vu
    INVENTIONES MATHEMATICAE, 2009, 177 (03) : 571 - 597
  • [49] INTEGRABLE SYMPLECTIC STRUCTURES ON COMPACT COMPLEX-MANIFOLDS
    MARKUSHEVICH, DG
    MATHEMATICS OF THE USSR-SBORNIK, 1986, 131 (3-4): : 459 - 469
  • [50] HARMONIC ANALYSIS ON LAGRANGIAN MANIFOLDS OF INTEGRABLE HAMILTONIAN SYSTEMS
    Bernatska, Julia
    Holod, Petro
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2013, 29 : 39 - 51