机构:
Univ Bucharest, Fac Math & Informat, 14 Acad Str, Romani 70109, Romania
Romanian Acad, Inst Math Simion Stoilow, 21 Calea Grivitei Str, Bucharest 010702, RomaniaUniv Bucharest, Fac Math & Informat, 14 Acad Str, Romani 70109, Romania
Ornea, Liviu
[1
,2
]
Verbitsky, Misha
论文数: 0引用数: 0
h-index: 0
机构:
Inst Nacl Matemat Pura & Aplicada IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
Natl Res Univ Higher Sch Econ, Fac Math, Lab Algebra Geometry, 6 Usacheva Str, Moscow, RussiaUniv Bucharest, Fac Math & Informat, 14 Acad Str, Romani 70109, Romania
Verbitsky, Misha
[3
,4
]
机构:
[1] Univ Bucharest, Fac Math & Informat, 14 Acad Str, Romani 70109, Romania
[2] Romanian Acad, Inst Math Simion Stoilow, 21 Calea Grivitei Str, Bucharest 010702, Romania
[3] Inst Nacl Matemat Pura & Aplicada IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
[4] Natl Res Univ Higher Sch Econ, Fac Math, Lab Algebra Geometry, 6 Usacheva Str, Moscow, Russia
Locally conformally Ka.hler;
global Ka.hler potential;
bimeromorphism;
minimal model;
normal variety;
KAHLER;
SURFACES;
D O I:
10.1090/proc/16559
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
A locally conformally Ka.hler (LCK) manifold is a complex manifold M which has a Ka.hler structure on its cover, such that the deck transform group acts on it by homotheties. Assume that the Ka.hler form is exact on the minimal Ka.hler cover of M. We prove that any bimeromorphic map M' -> M is in fact holomorphic; in other words, M has a unique minimal model. This can be applied to a wide class of LCK manifolds, such as the Hopf manifolds, their complex submanifolds and to OT manifolds.
机构:
Univ Cagliari, Dipartimento Matemat & Informat, Via Osped 72, I-09124 Cagliari, ItalyUniv Cagliari, Dipartimento Matemat & Informat, Via Osped 72, I-09124 Cagliari, Italy
Cappelletti-Montano, Beniamino
De Nicola, Antonio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Salerno, Dipartimento Matemat, Via Giovanni Paolo II 132, I-84084 Fisciano, ItalyUniv Cagliari, Dipartimento Matemat & Informat, Via Osped 72, I-09124 Cagliari, Italy
机构:
Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
Univ Grenoble Alpes, Inst Fourier Math, UMR CNRS 5582, 100 Rue Maths, F-38610 Gieres, FranceWuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
Rao, Sheng
Tsai, I-Hsun
论文数: 0引用数: 0
h-index: 0
机构:
Natl Taiwan Univ, Dept Math, Taipei 10617, TaiwanWuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
机构:
School of Mathematics and Statistics,Wuhan University
Universite de Grenoble-Alpes,Institut Fourier (Mathematiques) UMR du CNRSSchool of Mathematics and Statistics,Wuhan University
RAO Sheng
TSAI IHsun
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics,National TaiwanSchool of Mathematics and Statistics,Wuhan University