Bimeromorphic geometry of Kahler threefolds

被引:6
|
作者
Hoering, Andreas [1 ]
Peternell, Thomas [2 ]
机构
[1] Univ Cote Dazur, CNRS, LJAD, Nice, France
[2] Univ Bayreuth, Math Inst, D-95440 Bayreuth, Germany
关键词
COMPACT KAHLER; MINIMAL MODELS; KODAIRA DIMENSION; VANISHING THEOREM; SINGULAR SPACES; TERMINATION; VARIETIES; MANIFOLDS; ABUNDANCE; CRITERION;
D O I
10.1090/pspum/097.1/01679
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe the recently established minimal model program for (non-algebraic) Kahler threefolds as well as the abundance theorem for these spaces.
引用
收藏
页码:381 / 402
页数:22
相关论文
共 50 条
  • [1] Finite groups of bimeromorphic selfmaps of uniruled Kahler threefolds
    Prokhorov, Yu. G.
    Shramov, C. A.
    IZVESTIYA MATHEMATICS, 2020, 84 (05) : 978 - 1001
  • [3] Jordan property for groups of bimeromorphic automorphisms of compact Kahler threefolds
    Golota, A. S.
    SBORNIK MATHEMATICS, 2023, 214 (01) : 28 - 38
  • [4] Finite groups of bimeromorphic self-maps of nonuniruled Kahler threefolds
    Prokhorov, Yu. G.
    Shramov, C. A.
    SBORNIK MATHEMATICS, 2022, 213 (12) : 1695 - 1714
  • [5] ABUNDANCE FOR KAHLER THREEFOLDS
    Campana, Frederic
    Hoering, Andreas
    Peternell, Thomas
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2016, 49 (04): : 971 - 1025
  • [6] Compact Kahler threefolds with non-nef canonical bundle and symplectic geometry
    Lin, Hsueh-Yung
    MATHEMATICAL RESEARCH LETTERS, 2014, 21 (06) : 1341 - 1352
  • [7] METRIC PROPERTIES OF MANIFOLDS BIMEROMORPHIC TO COMPACT KAHLER SPACES
    ALESSANDRINI, L
    BASSANELLI, G
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1993, 37 (01) : 95 - 121
  • [8] BIMEROMORPHIC GEOMETRY OF LCK MANIFOLDS
    Ornea, Liviu
    Verbitsky, Misha
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (02) : 701 - 707
  • [9] Algebraic approximation of Kahler threefolds
    Schrack, Florian
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (11-12) : 1486 - 1499
  • [10] Minimal models for Kahler threefolds
    Hoering, Andreas
    Peternell, Thomas
    INVENTIONES MATHEMATICAE, 2016, 203 (01) : 217 - 264