Bimeromorphic geometry of Kahler threefolds

被引:6
|
作者
Hoering, Andreas [1 ]
Peternell, Thomas [2 ]
机构
[1] Univ Cote Dazur, CNRS, LJAD, Nice, France
[2] Univ Bayreuth, Math Inst, D-95440 Bayreuth, Germany
关键词
COMPACT KAHLER; MINIMAL MODELS; KODAIRA DIMENSION; VANISHING THEOREM; SINGULAR SPACES; TERMINATION; VARIETIES; MANIFOLDS; ABUNDANCE; CRITERION;
D O I
10.1090/pspum/097.1/01679
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe the recently established minimal model program for (non-algebraic) Kahler threefolds as well as the abundance theorem for these spaces.
引用
收藏
页码:381 / 402
页数:22
相关论文
共 50 条
  • [41] Linearizing generalized kahler geometry
    Lindstrom, Ulf
    Rocek, Martin
    von Unge, Rikard
    Zabzine, Maxim
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (04):
  • [42] A uniqueness theorem in Kahler geometry
    Guan, Pengfei
    Li, Qun
    Zhang, Xi
    MATHEMATISCHE ANNALEN, 2009, 345 (02) : 377 - 393
  • [43] A Kahler structure of the triplectic geometry
    Grigoriev, MA
    Semikhatov, AM
    THEORETICAL AND MATHEMATICAL PHYSICS, 2000, 124 (03) : 1157 - 1171
  • [44] THE KAHLER GEOMETRY ON THE REINHARDT DOMAINS
    YIN, WP
    KEXUE TONGBAO, 1988, 33 (05): : 436 - 437
  • [45] HARMONIC MAPS IN KAHLER GEOMETRY
    SAMPSON, JH
    LECTURE NOTES IN MATHEMATICS, 1985, 1161 : 193 - 205
  • [46] Kahler geometry and SUSY mechanics
    Bellucci, S
    Nersessian, A
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2001, 102 : 227 - 232
  • [47] On nearly-Kahler geometry
    Nagy, PA
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2002, 22 (02) : 167 - 178
  • [48] ON QUANTUM SPECIAL KAHLER GEOMETRY
    Bellucci, Stefano
    Marrani, Alessio
    Roychowdhury, Raju
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2010, 25 (09): : 1891 - 1935
  • [49] Formality in generalized Kahler geometry
    Cavalcanti, Gil R.
    TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (06) : 1119 - 1125
  • [50] HYPERKAHLER AND QUATERNIONIC KAHLER GEOMETRY
    SWANN, A
    MATHEMATISCHE ANNALEN, 1991, 289 (03) : 421 - 450