ON QUANTUM SPECIAL KAHLER GEOMETRY

被引:13
|
作者
Bellucci, Stefano [1 ]
Marrani, Alessio [2 ]
Roychowdhury, Raju [3 ]
机构
[1] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy
[2] Stanford Univ, Dept Phys, Stanford Inst Theoret Phys, Varian Lab, Stanford, CA 94305 USA
[3] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy
来源
关键词
Special Kahler geometry; supergravity; black holes; attractor mechanism; NON-BPS ATTRACTORS; NONLINEAR SIGMA-MODEL; STU BLACK-HOLES; CALABI-YAU; MACROSCOPIC ENTROPY; CP CONSERVATION; CRITICAL-POINTS; SUPERGRAVITY; F-THEORY; MANIFOLDS;
D O I
10.1142/S0217751X10049116
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We compute the effective black hole potential V-BH of the most general N = 2, d = 4 (local) special Kahler geometry with quantum perturbative corrections, consistent with axion-shift Peccei-Quinn symmetry and with cubic leading order behavior. We determine the charge configurations supporting axion-free attractors, and explain the differences among various configurations in relations to the presence of "flat" directions of V-BH at its critical points. Furthermore, we elucidate the role of the sectional curvature at the nonsupersymmetric critical points of V-BH, and compute the Riemann tensor (and related quantities), as well as the so-called E-tensor. The latter expresses the nonsymmetricity of the considered quantum perturbative special Kahler geometry.
引用
收藏
页码:1891 / 1935
页数:45
相关论文
共 50 条
  • [1] Special metrics in Kahler geometry
    Di Nezza, Eleonora
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2021, 14 (01): : 43 - 49
  • [2] What is special Kahler geometry?
    Craps, B
    Roose, F
    Troost, W
    VanProeyen, A
    NUCLEAR PHYSICS B, 1997, 503 (03) : 565 - 613
  • [3] Some remarks on special Kahler geometry
    Bartocci, Claudio
    Mencattini, Igor
    JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (07) : 755 - 763
  • [4] Special Kahler manifolds and generalized geometry
    Nannicini, Antonella
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2013, 31 (02) : 230 - 238
  • [5] Quantized Kahler Geometry and Quantum Gravity
    Lee, Jungjai
    Yang, Hyun Seok
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2018, 72 (12) : 1421 - 1441
  • [6] Special Kahler geometry - Does there exist a prepotential?
    Craps, B
    Roose, F
    Troost, W
    Van Proeyen, A
    STRINGS, BRANES AND DUALITIES, 1999, 520 : 449 - 454
  • [7] Special Kahler geometry and holomorphic Lagrangian fibrations
    Li, Yang
    Tosatti, Valentino
    COMPTES RENDUS MATHEMATIQUE, 2024, 362 : 171 - 196
  • [8] Exponential families, Kahler geometry and quantum mechanics
    Molitor, Mathieu
    JOURNAL OF GEOMETRY AND PHYSICS, 2013, 70 : 54 - 80
  • [9] Random geometry, quantum gravity and the Kahler potential
    Ferrari, Frank
    Klevtsov, Semyon
    Zelditch, Steve
    PHYSICS LETTERS B, 2011, 705 (04) : 375 - 378
  • [10] Special Kahler geometry on the moduli spaces of Higgs bundles
    Huang, Zhenxi
    TOPOLOGY AND ITS APPLICATIONS, 2021, 301