ON QUANTUM SPECIAL KAHLER GEOMETRY

被引:13
|
作者
Bellucci, Stefano [1 ]
Marrani, Alessio [2 ]
Roychowdhury, Raju [3 ]
机构
[1] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy
[2] Stanford Univ, Dept Phys, Stanford Inst Theoret Phys, Varian Lab, Stanford, CA 94305 USA
[3] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy
来源
关键词
Special Kahler geometry; supergravity; black holes; attractor mechanism; NON-BPS ATTRACTORS; NONLINEAR SIGMA-MODEL; STU BLACK-HOLES; CALABI-YAU; MACROSCOPIC ENTROPY; CP CONSERVATION; CRITICAL-POINTS; SUPERGRAVITY; F-THEORY; MANIFOLDS;
D O I
10.1142/S0217751X10049116
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We compute the effective black hole potential V-BH of the most general N = 2, d = 4 (local) special Kahler geometry with quantum perturbative corrections, consistent with axion-shift Peccei-Quinn symmetry and with cubic leading order behavior. We determine the charge configurations supporting axion-free attractors, and explain the differences among various configurations in relations to the presence of "flat" directions of V-BH at its critical points. Furthermore, we elucidate the role of the sectional curvature at the nonsupersymmetric critical points of V-BH, and compute the Riemann tensor (and related quantities), as well as the so-called E-tensor. The latter expresses the nonsymmetricity of the considered quantum perturbative special Kahler geometry.
引用
收藏
页码:1891 / 1935
页数:45
相关论文
共 50 条
  • [41] Symmetries in generalized Kahler geometry
    Lin, Yi
    Tolman, Susan
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 268 (01) : 199 - 222
  • [42] TWISTOR METHODS IN KAHLER GEOMETRY
    NANNICINI, A
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1992, 6A (03): : 411 - 417
  • [43] ON THE AXIOM OF SPHERES IN KAHLER GEOMETRY
    KASSABOV, OT
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1982, 35 (03): : 303 - 305
  • [44] Ricci curvature in Kahler geometry
    Sun, Song
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2017, 28 (09)
  • [45] The Kahler geometry of Bott manifolds
    Boyer, Charles P.
    Calderbank, David M. J.
    Tonnesen-Friedman, Christina W.
    ADVANCES IN MATHEMATICS, 2019, 350 : 1 - 62
  • [46] Generalized Kahler geometry and gerbes
    Hull, Chris M.
    Lindstrom, Ulf
    Rocek, Martin
    von Unge, Rikard
    Zabzine, Maxim
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (10):
  • [47] KAHLER GEOMETRY ON HURWITZ SPACES
    Naumann, Philipp
    DOCUMENTA MATHEMATICA, 2018, 23 : 1829 - 1861
  • [48] ON THE GEOMETRY OF AFFINE KAHLER IMMERSIONS
    NOMIZU, K
    PINKALL, U
    PODESTA, F
    NAGOYA MATHEMATICAL JOURNAL, 1990, 120 : 205 - 222
  • [49] Quaternion-Kahler geometry
    Salamon, SH
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1999, : 83 - 121
  • [50] Bimeromorphic geometry of Kahler threefolds
    Hoering, Andreas
    Peternell, Thomas
    ALGEBRAIC GEOMETRY: SALT LAKE CITY 2015, PT 1, 2018, 97 : 381 - 402