SUM-PRODUCT PHENOMENON IN FINITE FIELDS NOT OF PRIME ORDER

被引:1
|
作者
Shen, Chun-Yen [1 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
关键词
Sum-product estimates; expanding maps;
D O I
10.1216/RMJ-2011-41-3-941
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F = F-p(n) be a finite field and A a subset of F so that for any A' subset of A with vertical bar A'vertical bar >= vertical bar A vertical bar(15/16) and for any G subset of F a subfield (not necessarily proper) and for any elements c, d is an element of F if A' subset of cG + d, then vertical bar A vertical bar <= vertical bar G vertical bar(1/2) Then it must be that max(vertical bar A + A vertical bar,vertical bar F(A, A)vertical bar) greater than or similar to vertical bar A vertical bar(17/16) where F : F-p x F-p -> F-p is a function defined by F(x, y) = x(g(x) + cy), where c is an element of F-p*; and g : F-p -> F-p is any function. The case g = 0 and c = 1 improves the exponent in [6] from 20/19 to 17/16.
引用
收藏
页码:941 / 948
页数:8
相关论文
共 50 条
  • [41] Sum-product type estimates for subsets of finite valuation rings
    Yazici, Esen Aksoy
    ACTA ARITHMETICA, 2018, 185 (01) : 9 - 18
  • [42] 'SUM-PRODUCT ESTIMATES AND MULTIPLICATIVE ORDERS OF γ AND γ + γ-1 IN FINITE FIELDS' (vol 85, pg 505, 2012)
    Shparlinski, Igor
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 87 (03) : 527 - 528
  • [43] On the exponential sum-product problem
    Shparlinski, Igor
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2008, 19 (02): : 325 - 331
  • [44] On sum-product representations in Zq
    Chang, Mei-Chu
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2006, 8 (03) : 435 - 463
  • [45] On Thin Sum-Product Bases
    Hennecart F.
    Prakash G.
    Pramod E.
    Combinatorica, 2022, 42 (2) : 165 - 202
  • [46] An update on the sum-product problem
    Rudnev, Misha
    Stevens, Sophie
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2022, 173 (02) : 411 - 430
  • [47] MULTIPLE SUM-PRODUCT IDENTITIES
    CARLITZ, L
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (08): : 917 - &
  • [48] Residual Sum-Product Networks
    Ventola, Fabrizio
    Stelzner, Karl
    Molina, Alejandro
    Kersting, Kristian
    INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138, 2020, 138 : 545 - 556
  • [49] Sum-Product Network Decompilation
    Butz, Cory J.
    Oliveira, Jhonatan S.
    Peharz, Robert
    INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138, 2020, 138 : 53 - 64
  • [50] Sum-product theorem and exponential sum estimates in residue classes with modulus involving few prime factors
    Bourgain, J
    Chang, MC
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (07) : 463 - 466