SUM-PRODUCT PHENOMENON IN FINITE FIELDS NOT OF PRIME ORDER

被引:1
|
作者
Shen, Chun-Yen [1 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
关键词
Sum-product estimates; expanding maps;
D O I
10.1216/RMJ-2011-41-3-941
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F = F-p(n) be a finite field and A a subset of F so that for any A' subset of A with vertical bar A'vertical bar >= vertical bar A vertical bar(15/16) and for any G subset of F a subfield (not necessarily proper) and for any elements c, d is an element of F if A' subset of cG + d, then vertical bar A vertical bar <= vertical bar G vertical bar(1/2) Then it must be that max(vertical bar A + A vertical bar,vertical bar F(A, A)vertical bar) greater than or similar to vertical bar A vertical bar(17/16) where F : F-p x F-p -> F-p is a function defined by F(x, y) = x(g(x) + cy), where c is an element of F-p*; and g : F-p -> F-p is any function. The case g = 0 and c = 1 improves the exponent in [6] from 20/19 to 17/16.
引用
收藏
页码:941 / 948
页数:8
相关论文
共 50 条