SUM-PRODUCT PHENOMENON IN FINITE FIELDS NOT OF PRIME ORDER

被引:1
|
作者
Shen, Chun-Yen [1 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
关键词
Sum-product estimates; expanding maps;
D O I
10.1216/RMJ-2011-41-3-941
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F = F-p(n) be a finite field and A a subset of F so that for any A' subset of A with vertical bar A'vertical bar >= vertical bar A vertical bar(15/16) and for any G subset of F a subfield (not necessarily proper) and for any elements c, d is an element of F if A' subset of cG + d, then vertical bar A vertical bar <= vertical bar G vertical bar(1/2) Then it must be that max(vertical bar A + A vertical bar,vertical bar F(A, A)vertical bar) greater than or similar to vertical bar A vertical bar(17/16) where F : F-p x F-p -> F-p is a function defined by F(x, y) = x(g(x) + cy), where c is an element of F-p*; and g : F-p -> F-p is any function. The case g = 0 and c = 1 improves the exponent in [6] from 20/19 to 17/16.
引用
收藏
页码:941 / 948
页数:8
相关论文
共 50 条
  • [31] Sum-product theorems in algebraic number fields
    Jean Bourgain
    Mei-Chu Chang
    Journal d'Analyse Mathématique, 2009, 109 : 253 - 277
  • [32] SUM-PRODUCT THEOREMS IN ALGEBRAIC NUMBER FIELDS
    Bourgain, Jean
    Chang, Mei-Chu
    JOURNAL D ANALYSE MATHEMATIQUE, 2009, 109 : 253 - 277
  • [33] On sum-product bases
    Hegyvari, Norbert
    RAMANUJAN JOURNAL, 2009, 19 (01): : 1 - 8
  • [34] On sum-product bases
    Norbert Hegyvári
    The Ramanujan Journal, 2009, 19 : 1 - 8
  • [35] A Note on Solymosi’s Sum-Product Estimate for Ordered Fields
    Boqing Xue
    Ukrainian Mathematical Journal, 2015, 66 : 1408 - 1413
  • [36] Sum-Product Autoencoding: Encoding and Decoding Representations Using Sum-Product Networks
    Vergari, Antonio
    Peharz, Robert
    Di Mauro, Nicola
    Molina, Alejandro
    Kersting, Kristian
    Esposito, Floriana
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 4163 - 4170
  • [37] A Note on Solymosi's Sum-Product Estimate for Ordered Fields
    Xue, Boqing
    Ukrainian Mathematical Journal, 2015, 66 (09) : 1408 - 1413
  • [38] NEW RESULTS ON SUM-PRODUCT TYPE GROWTH OVER FIELDS
    Murphy, Brendan
    Petridis, Giorgis
    Roche-Newton, Oliver
    Rudnev, Misha
    Shkredov, Ilya D.
    MATHEMATIKA, 2019, 65 (03) : 588 - 642
  • [39] An application of the sum-product phenomenon to sets avoiding several linear equations
    Shkredov, I. D.
    SBORNIK MATHEMATICS, 2018, 209 (04) : 580 - 603
  • [40] A note on sum-product estimates over finite valuation rings
    Pham, Duc Hiep
    ACTA ARITHMETICA, 2021, 198 (02) : 187 - 194