A study of farthest points and uniquely remotal sets

被引:0
|
作者
Sangeeta [1 ]
Narang, T. D. [2 ]
机构
[1] Amardeep Singh Shergill Mem Coll, Dept Math, Mukandpur 144507, Punjab, India
[2] Guru Nanak Dev Univ, Dept Math, Amritsar 143005, Punjab, India
关键词
Farthest point; Remotal set; Uniquely remotal set; Farthest point map; Isolated point;
D O I
10.1080/09720502.2019.1661602
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a bounded subset K of a metric space (X, d), an element k(0) is an element of K is called a farthest point to an x is an element of X if d(x,k(0)) = sup(k is an element of K)d(x,k). The set of all farthest points to x in K is denoted by F-K(x). The set K is said to be remotal(uniquely remotal) if F-K(x) is non-empty(a singleton) for each x is an element of X. In this paper, we discuss the nature and structure of sets of farthest points and conditions under which sets are uniquely remotal. The underlying spaces are metric spaces and linear metric spaces.
引用
收藏
页码:689 / 696
页数:8
相关论文
共 50 条
  • [31] FARTHEST POINTS AND POROSITY
    Boulos, Wissam
    Reich, Simeon
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2014, 15 (06) : 1319 - 1329
  • [32] ON EXISTENCE OF FARTHEST POINTS
    PANDA, BB
    DWIVEDI, K
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1985, 16 (05): : 486 - 490
  • [33] Asymptotic Farthest Points and Extreme Points
    Ardakani, M. Zare Nejhad
    Tehrani, H. Mazaheri
    FILOMAT, 2018, 32 (17) : 5875 - 5885
  • [34] Remotal sets in tensor product spaces and ε-remotality
    Salameh, H.
    Khalil, R.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2019, 19 (02): : 116 - 119
  • [35] Farthest points on convex surfaces
    Tudor Zamfirescu
    Mathematische Zeitschrift, 1997, 226 : 623 - 630
  • [36] Chebyshev Centers that are Not Farthest Points
    Debmalya Sain
    Vladimir Kadets
    Kallol Paul
    Anubhab Ray
    Indian Journal of Pure and Applied Mathematics, 2018, 49 : 189 - 204
  • [37] Farthest points on flat surfaces
    Rouyer, Joel
    Vilcu, Costin
    JOURNAL OF GEOMETRY, 2018, 109 (03)
  • [38] Some remarks on farthest points
    Montesinos, Vicente
    Zizler, Peter
    Zizler, Vaclav
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2011, 105 (01) : 119 - 131
  • [39] CHEBYSHEV CENTERS THAT ARE NOT FARTHEST POINTS
    Sain, Debmalya
    Kadets, Vladimir
    Paul, Kallol
    Ray, Anubhab
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2018, 49 (02): : 189 - 204
  • [40] Derivatives of generalized farthest functions and existence of generalized farthest points
    Ni, RX
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 316 (02) : 642 - 651