Some remarks on farthest points

被引:2
|
作者
Montesinos, Vicente [1 ]
Zizler, Peter [2 ]
Zizler, Vaclav [3 ]
机构
[1] Univ Politecn Valencia, Inst Matemat Pura & Aplicada, Valencia 46022, Spain
[2] Mt Royal Univ, Dept Math Phys & Engn, Calgary, AB, Canada
[3] Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
关键词
Farthest points; Strongly exposed points; Generic differentiability; Convex functions; UNIFORMLY CONVEX;
D O I
10.1007/s13398-011-0012-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use renormings and generic differentiability of convex functions to prove some results on farthest points in sets in Banach spaces. As a corollary, we obtain an alternative proof of the Lindenstrauss-Troyanski result on representation of weakly compact convex sets by means of strongly exposed points. We use this approach to simplify former proofs of several known results in this area.
引用
收藏
页码:119 / 131
页数:13
相关论文
共 50 条
  • [1] Some remarks on farthest points
    Vicente Montesinos
    Peter Zizler
    Václav Zizler
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2011, 105 : 119 - 131
  • [2] Farthest points and the farthest distance map
    Bandyopadhyay, P
    Dutta, S
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2005, 71 (03) : 425 - 433
  • [3] Characterizations of Some Rotundity Properties in Terms of Farthest Points
    Prasath, C. Arunachala
    Thota, Vamsinadh
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2025, 22 (02)
  • [4] REMARKS ON THE UNIQUE FARTHEST POINT PROBLEM IN SOME SUBSPACES OF C
    BOSZNAY, AP
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1981, 37 (04): : 471 - 479
  • [5] FARTHEST POINTS OF SETS
    PANDA, BB
    KAPOOR, OP
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 62 (02) : 345 - 353
  • [6] On farthest points of sets
    Balashov, M. V.
    Ivanov, G. E.
    MATHEMATICAL NOTES, 2006, 80 (1-2) : 159 - 166
  • [7] FARTHEST POINTS AND POROSITY
    Boulos, Wissam
    Reich, Simeon
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2014, 15 (06) : 1319 - 1329
  • [8] Farthest points and cut loci on some degenerate convex surfaces
    Itoh J.-I.
    Vîlcu C.
    Journal of Geometry, 2004, 80 (1-2) : 106 - 120
  • [9] ON EXISTENCE OF FARTHEST POINTS
    PANDA, BB
    DWIVEDI, K
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1985, 16 (05): : 486 - 490
  • [10] On farthest points of sets
    M. V. Balashov
    G. E. Ivanov
    Mathematical Notes, 2006, 80 : 159 - 166