A study of farthest points and uniquely remotal sets

被引:0
|
作者
Sangeeta [1 ]
Narang, T. D. [2 ]
机构
[1] Amardeep Singh Shergill Mem Coll, Dept Math, Mukandpur 144507, Punjab, India
[2] Guru Nanak Dev Univ, Dept Math, Amritsar 143005, Punjab, India
关键词
Farthest point; Remotal set; Uniquely remotal set; Farthest point map; Isolated point;
D O I
10.1080/09720502.2019.1661602
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a bounded subset K of a metric space (X, d), an element k(0) is an element of K is called a farthest point to an x is an element of X if d(x,k(0)) = sup(k is an element of K)d(x,k). The set of all farthest points to x in K is denoted by F-K(x). The set K is said to be remotal(uniquely remotal) if F-K(x) is non-empty(a singleton) for each x is an element of X. In this paper, we discuss the nature and structure of sets of farthest points and conditions under which sets are uniquely remotal. The underlying spaces are metric spaces and linear metric spaces.
引用
收藏
页码:689 / 696
页数:8
相关论文
共 50 条
  • [41] Farthest points and monotone operators
    Westphal, U
    Schwartz, T
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1998, 58 (01) : 75 - 92
  • [42] Some remarks on farthest points
    Vicente Montesinos
    Peter Zizler
    Václav Zizler
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2011, 105 : 119 - 131
  • [43] Farthest points on convex surfaces
    Zamfirescu, T
    MATHEMATISCHE ZEITSCHRIFT, 1997, 226 (04) : 623 - 630
  • [44] REMOTAL POINTS AND A KREIN-MILMAN TYPE THEOREM
    Sababheh, M.
    Khali, R.
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2011, 12 (01) : 5 - 15
  • [45] REMOTAL SETS IN THE SPACE OF P-INTEGRABLE FUNCTIONS
    Al-Sharif, Sh.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2010, 3 (02): : 117 - 126
  • [46] Quasigeodesics and farthest points on convex surfaces
    Ieiri, K.
    Itoh, J.
    Vilcu, C.
    ADVANCES IN GEOMETRY, 2011, 11 (04) : 571 - 584
  • [47] Multiple farthest points on Alexandrov surfaces
    Vilcu, Costin
    Zamfirescu, Tudor
    ADVANCES IN GEOMETRY, 2007, 7 (01) : 83 - 100
  • [48] Existence of farthest points in Hilbert spaces
    Tehrani, Hamid Mazaheri
    Jafarbeigi, Raham Rahmani
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (02): : 437 - 446
  • [49] Criteria for farthest points on convex surfaces
    Itoh, Jin-ichi
    Vilcu, Costin
    MATHEMATISCHE NACHRICHTEN, 2009, 282 (11) : 1537 - 1547
  • [50] Uniquely universal sets
    Miller, Arnold W.
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (13) : 3033 - 3041