Extended Newton-type method for nonlinear functions with values in a cone

被引:1
|
作者
Silva, G. N. [1 ]
Santos, P. S. M. [2 ]
Souza, S. S. [2 ]
机构
[1] Univ Fed Oeste Bahia, Ctr Ciencias Exatas & Tecnol, BR-47808021 Barreiras, BA, Brazil
[2] Univ Fed Piaui, Dept Matemat, Parnaiba, PI, Brazil
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2018年 / 37卷 / 04期
关键词
Newton-like method; Inclusion problem; Banach space; Convex process; CONVEX-COMPOSITE OPTIMIZATION; SOLVING GENERALIZED EQUATIONS; MAJORANT CONDITION; CONVERGENCE ANALYSIS; INCLUSION PROBLEMS; OUTER INVERSES; BANACH-SPACES; ERROR-BOUNDS; KANTOROVICHS; INEQUALITIES;
D O I
10.1007/s40314-018-0617-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the problem of finding solutions of nonlinear inclusion problems in Banach space. Using convex optimization techniques introduced by Robinson (Numer Math 19:341-347, 1972), a convergence theorem for Kantorovich-like methods is given, which improves the results of Yamamoto (Jpn J Appl Math 3(2):295-313, 1986; Numer Math 51(5):545-557, 1987) and Robinson (Numer Math 19:341-347, 1972). The result is compared with previously known results. Numerical examples further justify the theoretical results.
引用
收藏
页码:5082 / 5097
页数:16
相关论文
共 50 条
  • [21] Extended Newton-type iteration for nonlinear ill-posed equations in Banach space
    C. D. Sreedeep
    Santhosh George
    Ioannis K. Argyros
    Journal of Applied Mathematics and Computing, 2019, 60 : 435 - 453
  • [22] On the convergence of an inexact Newton-type method
    Zhou, Guanglu
    Qi, Liqun
    OPERATIONS RESEARCH LETTERS, 2006, 34 (06) : 647 - 652
  • [23] Extended Newton-type iteration for nonlinear ill-posed equations in Banach space
    Sreedeep, C. D.
    George, Santhosh
    Argyros, Ioannis K.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2019, 60 (1-2) : 435 - 453
  • [24] Extended Newton-type method and its convergence analysis for nonsmooth generalized equations
    Rashid, M. H.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (02) : 1295 - 1313
  • [25] A modified Newton-type Koiter-Newton method for tracing the geometrically nonlinear response of structures
    Liang, Ke
    Abdalla, Mostafa M.
    Sun, Qin
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 113 (10) : 1541 - 1560
  • [26] FedDANE: A Federated Newton-Type Method
    Li, Tian
    Sahu, Anit Kumar
    Zaheer, Manzil
    Sanjabi, Maziar
    Talwalkar, Ameet
    Smith, Virginia
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 1227 - 1231
  • [27] NEWTON-TYPE INTERPOLATION FORMULA FOR NONLINEAR FUNCTIONALS
    MAKAROV, VL
    KHLOBYSTOV, VV
    DOKLADY AKADEMII NAUK SSSR, 1989, 307 (03): : 534 - 537
  • [28] Extended Newton-type method and its convergence analysis for nonsmooth generalized equations
    M. H. Rashid
    Journal of Fixed Point Theory and Applications, 2017, 19 : 1295 - 1313
  • [29] Inexact Newton method for non-linear functions with values in a cone
    Ferreira, O. P.
    Silva, G. N.
    APPLICABLE ANALYSIS, 2019, 98 (08) : 1461 - 1477
  • [30] A new smoothing Newton-type method for second-order cone programming problems
    Fang, Liang
    He, Guoping
    Hu, Yunhong
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (03) : 1020 - 1029