Extended Newton-type method and its convergence analysis for nonsmooth generalized equations

被引:0
|
作者
M. H. Rashid
机构
[1] University of Rajshahi,Department of Mathematics
关键词
Generalized equation; Lipschitz-like mapping; extended Newton-type method; semilocal convergence; point based approximation; Primary 47H04; 90C30; Secondary 49J53; 65K10;
D O I
暂无
中图分类号
学科分类号
摘要
Let X and Y be Banach spaces and Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} be an open subset of X. Suppose that f:Ω⊆X→Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:{\Omega \subseteq X}\rightarrow {Y}$$\end{document} is a single-valued function which is nonsmooth and it has point based approximations on Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} and F:X⇉2Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F:X\rightrightarrows 2^Y$$\end{document} is a set-valued mapping with closed graph. An extended Newton-type method is introduced in the present paper for solving the nonsmooth generalized equation 0∈f(x)+F(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\in {f(x)+F(x)}$$\end{document}. Semilocal and local convergence of this method are analyzed based on the concept of point-based approximation.
引用
收藏
页码:1295 / 1313
页数:18
相关论文
共 50 条