Extended Newton-type method for nonlinear functions with values in a cone

被引:1
|
作者
Silva, G. N. [1 ]
Santos, P. S. M. [2 ]
Souza, S. S. [2 ]
机构
[1] Univ Fed Oeste Bahia, Ctr Ciencias Exatas & Tecnol, BR-47808021 Barreiras, BA, Brazil
[2] Univ Fed Piaui, Dept Matemat, Parnaiba, PI, Brazil
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2018年 / 37卷 / 04期
关键词
Newton-like method; Inclusion problem; Banach space; Convex process; CONVEX-COMPOSITE OPTIMIZATION; SOLVING GENERALIZED EQUATIONS; MAJORANT CONDITION; CONVERGENCE ANALYSIS; INCLUSION PROBLEMS; OUTER INVERSES; BANACH-SPACES; ERROR-BOUNDS; KANTOROVICHS; INEQUALITIES;
D O I
10.1007/s40314-018-0617-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the problem of finding solutions of nonlinear inclusion problems in Banach space. Using convex optimization techniques introduced by Robinson (Numer Math 19:341-347, 1972), a convergence theorem for Kantorovich-like methods is given, which improves the results of Yamamoto (Jpn J Appl Math 3(2):295-313, 1986; Numer Math 51(5):545-557, 1987) and Robinson (Numer Math 19:341-347, 1972). The result is compared with previously known results. Numerical examples further justify the theoretical results.
引用
收藏
页码:5082 / 5097
页数:16
相关论文
共 50 条
  • [31] EXTENSION OF NEWTONS METHOD TO NONLINEAR FUNCTIONS WITH VALUES IN A CONE
    ROBINSON, SM
    NUMERISCHE MATHEMATIK, 1972, 19 (04) : 341 - &
  • [32] A Modification of Regularized Newton-Type Method for Nonlinear Ill-Posed Problems
    Meng, Ze-hong
    Zhao, Zhen-yu
    He, Guo-qiang
    HIGH PERFORMANCE COMPUTING AND APPLICATIONS, 2010, 5938 : 295 - +
  • [33] A truly globally convergent Newton-type method for the monotone nonlinear complementarity problem
    Solodov, MV
    Svaiter, BF
    SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (02) : 605 - 625
  • [34] A third-order Newton-type method to solve systems of nonlinear equations
    Darvishi, M. T.
    Barati, A.
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (02) : 630 - 635
  • [35] A new fourth order Newton-type method for solution of system of nonlinear equations
    Khan, Waseem Asghar
    Noor, Khalida Inayat
    Bhatti, Kaleemulah
    Ansari, Faryal Aijaz
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 270 : 724 - 730
  • [36] On the convergence of Newton-type methods using recurrent functions
    Argyros, Ioannis K.
    Hilout, Said
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (14) : 3273 - 3296
  • [37] A continuous Newton-type method for unconstrained optimization
    Zhang, Lei-Hong
    Kelley, C. T.
    Liao, Li-Zhi
    PACIFIC JOURNAL OF OPTIMIZATION, 2008, 4 (02): : 259 - 277
  • [38] DINO: Distributed Newton-Type Optimization Method
    Crane, Rixon
    Roosta, Fred
    25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [39] Newton-type method for solving generalized inclusion
    Santos, P. S. M.
    Silva, G. N.
    Silva, R. C. M.
    NUMERICAL ALGORITHMS, 2021, 88 (04) : 1811 - 1829
  • [40] A proximal Newton-type method for equilibrium problems
    Santos, P. J. S.
    Santos, P. S. M.
    Scheimberg, S.
    OPTIMIZATION LETTERS, 2018, 12 (05) : 997 - 1009