Memory-efficient modeling and search techniques for hardware ASR decoders

被引:7
|
作者
Price, Michael [1 ,2 ]
Chandrakasan, Anantha [2 ]
Glass, James [1 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Microsyst Technol Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
speech recognition; neural networks; fixed-point arithmetic; embedded systems; SPEECH RECOGNITION; MW;
D O I
10.21437/Interspeech.2016-287
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper gives an overview of acoustic modeling and search techniques for low-power embedded ASR decoders. Our design decisions prioritize memory bandwidth, which is the main driver in system power consumption. We evaluate three acoustic modeling approaches Gaussian mixture model (GMM), subspace GMM (SGMM) and deep neural network (DNN) and identify tradeoffs between memory bandwidth and recognition accuracy. We also present an HMM search scheme with WFST compression and caching, predictive beam width control, and a word lattice. Our results apply to embedded system implementations using microcontrollers, DSPs, FPGAs, or ASICs.
引用
收藏
页码:1893 / 1897
页数:5
相关论文
共 50 条
  • [1] Memory-Efficient Polar Decoders
    Hashemi, Seyyed Ali
    Condo, Carlo
    Ercan, Furkan
    Gross, Warren J.
    IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2017, 7 (04) : 604 - 615
  • [2] A Memory-Efficient Architecture for Low Latency Viterbi Decoders
    Tang, Yun-Ching
    Hu, Do-Chen
    Wei, Weiyi
    Lin, Wen-Chung
    Lin, Hongchin
    2009 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT), PROCEEDINGS OF TECHNICAL PROGRAM, 2009, : 335 - 338
  • [3] A Hardware Acceleration Scheme for Memory-Efficient Flow Processing
    Yang, Xin
    Sezer, Sakir
    O'Neill, Shane
    2014 27TH IEEE INTERNATIONAL SYSTEM-ON-CHIP CONFERENCE (SOCC), 2014, : 437 - 442
  • [4] A Memory-Efficient Hardware Architecture for Deformable Convolutional Networks
    Yu, Yue
    Luo, Jiapeng
    Mao, Wendong
    Wang, Zhongfeng
    2021 IEEE WORKSHOP ON SIGNAL PROCESSING SYSTEMS (SIPS 2021), 2021, : 140 - 145
  • [5] Memory-Efficient Differentiable Transformer Architecture Search
    Zhao, Yuekai
    Dong, Li
    Shen, Yelong
    Zhang, Zhihua
    Wei, Furu
    Chen, Weizhu
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 4254 - 4264
  • [6] Pruned RNN-T for fast, memory-efficient ASR training
    Kuang, Fangjun
    Guo, Liyong
    Kang, Wei
    Lin, Long
    Luo, Mingshuang
    Yao, Zengwei
    Povey, Daniel
    INTERSPEECH 2022, 2022, : 2068 - 2072
  • [7] A Hardware-Oriented and Memory-Efficient Method for CTC Decoding
    Lu, Siyuan
    Lu, Jinming
    Lin, Jun
    Wang, Zhongfeng
    IEEE ACCESS, 2019, 7 : 120681 - 120694
  • [8] Memory-Efficient Search Trees for Database Management Systems
    Zhang, Huanchen
    SIGMOD '21: PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2021, : 9 - 9
  • [9] Memory-Efficient Image Databases for Mobile Visual Search
    Chen, David M.
    Girod, Bernd
    IEEE MULTIMEDIA, 2014, 21 (01) : 14 - 23
  • [10] BAT: Boundary aware transducer for memory-efficient and low-latency ASR
    An, Keyu
    Shi, Xian
    Zhang, Shiliang
    INTERSPEECH 2023, 2023, : 4963 - 4967