Memory-efficient modeling and search techniques for hardware ASR decoders

被引:7
|
作者
Price, Michael [1 ,2 ]
Chandrakasan, Anantha [2 ]
Glass, James [1 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Microsyst Technol Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
speech recognition; neural networks; fixed-point arithmetic; embedded systems; SPEECH RECOGNITION; MW;
D O I
10.21437/Interspeech.2016-287
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper gives an overview of acoustic modeling and search techniques for low-power embedded ASR decoders. Our design decisions prioritize memory bandwidth, which is the main driver in system power consumption. We evaluate three acoustic modeling approaches Gaussian mixture model (GMM), subspace GMM (SGMM) and deep neural network (DNN) and identify tradeoffs between memory bandwidth and recognition accuracy. We also present an HMM search scheme with WFST compression and caching, predictive beam width control, and a word lattice. Our results apply to embedded system implementations using microcontrollers, DSPs, FPGAs, or ASICs.
引用
收藏
页码:1893 / 1897
页数:5
相关论文
共 50 条
  • [41] A robust and memory-efficient transition state search method for complex energy landscapes
    Avis, Samuel J.
    Panter, Jack R.
    Kusumaatmaja, Halim
    JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (12):
  • [42] PA-NAS: Partial operation activation for memory-efficient architecture search
    Huabin Diao
    Gongyan Li
    Shaoyun Xu
    Yuexing Hao
    Applied Intelligence, 2022, 52 : 9373 - 9387
  • [43] Memory-Efficient Adaptive Optimization
    Anil, Rohan
    Gupta, Vineet
    Koren, Tomer
    Singer, Yoram
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [44] MemNAS: Memory-Efficient Neural Architecture Search with Grow-Trim Learning
    Liu, Peiye
    Wu, Bo
    Ma, Huadong
    Seok, Mingoo
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 2105 - 2113
  • [45] Memory-efficient LVCSR search using a one-pass stack decoder
    Schuster, M
    COMPUTER SPEECH AND LANGUAGE, 2000, 14 (01): : 47 - 77
  • [46] Techniques for Memory-Efficient Model Checking of C and C plus plus Code
    Rockai, Petr
    Still, Vladimir
    Barnat, Jiri
    SOFTWARE ENGINEERING AND FORMAL METHODS, 2015, 9276 : 268 - 282
  • [47] A Hardware-Based Memory-Efficient Solution for Pair-Wise Compact Sequence Alignment
    Sarkar, Ardhendu
    Ghosh, Surajeet
    Ray, Sanchita Saha
    IETE JOURNAL OF RESEARCH, 2023, 69 (06) : 3638 - 3649
  • [48] A memory-efficient strategy for exploring the web
    Castillo, Carlos
    Nelli, Alberto
    Panconesi, Alessandro
    2006 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE, (WI 2006 MAIN CONFERENCE PROCEEDINGS), 2006, : 680 - +
  • [49] MEMA-NAS: Memory-Efficient Multi-Agent Neural Architecture Search
    Kong, Qi
    Xu, Xin
    Zhang, Liangliang
    PATTERN RECOGNITION AND COMPUTER VISION, PT IV, 2021, 13022 : 176 - 187
  • [50] Memory-efficient Parallel Tensor Decompositions
    Baskaran, Muthu
    Henretty, Tom
    Pradelle, Benoit
    Langston, M. Harper
    Bruns-Smith, David
    Ezick, James
    Lethin, Richard
    2017 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2017,