Memory-efficient modeling and search techniques for hardware ASR decoders

被引:7
|
作者
Price, Michael [1 ,2 ]
Chandrakasan, Anantha [2 ]
Glass, James [1 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Microsyst Technol Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
speech recognition; neural networks; fixed-point arithmetic; embedded systems; SPEECH RECOGNITION; MW;
D O I
10.21437/Interspeech.2016-287
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper gives an overview of acoustic modeling and search techniques for low-power embedded ASR decoders. Our design decisions prioritize memory bandwidth, which is the main driver in system power consumption. We evaluate three acoustic modeling approaches Gaussian mixture model (GMM), subspace GMM (SGMM) and deep neural network (DNN) and identify tradeoffs between memory bandwidth and recognition accuracy. We also present an HMM search scheme with WFST compression and caching, predictive beam width control, and a word lattice. Our results apply to embedded system implementations using microcontrollers, DSPs, FPGAs, or ASICs.
引用
收藏
页码:1893 / 1897
页数:5
相关论文
共 50 条
  • [31] Memory-Efficient Content Filtering Hardware for High-Speed Intrusion Detection Systems
    Yi, Sungwon
    Kim, Byoung-Koo
    Oh, Jintae
    Jang, Jongsoo
    Kesidis, George
    Das, Chita R.
    APPLIED COMPUTING 2007, VOL 1 AND 2, 2007, : 264 - +
  • [32] Efficient hardware realization of IRA code decoders
    Kienle, F
    Wehn, N
    2004 IEEE WORKSHOP ON SIGNAL PROCESSING SYSTEMS DESIGN AND IMPLEMENTATION, PROCEEDINGS, 2004, : 286 - 291
  • [33] Memory-efficient interconnect optimization
    Lai, MH
    Wong, DF
    PROCEEDINGS OF THE ASP-DAC 2001: ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE 2001, 2001, : 198 - 202
  • [34] Memory-efficient DRASiW Models
    Napoli, Otavio Oliveira
    de Almeida, Ana Maria
    Borin, Edson
    Breternitz Jr, Mauricio
    NEUROCOMPUTING, 2024, 610
  • [35] Memory-efficient fingerprint verification
    Beleznai, C
    Ramoser, H
    Wachmann, B
    Birchbauer, J
    Bischof, H
    Kropatsch, W
    2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, 2001, : 463 - 466
  • [36] Memory-efficient fixpoint computation
    Sung Kook Kim
    Arnaud J. Venet
    Aditya V. Thakur
    Formal Methods in System Design, 2025, 65 (1) : 133 - 162
  • [37] Memory-Efficient Hash Joins
    Barber, R.
    Lohman, G.
    Pandis, I.
    Raman, V.
    Sidle, R.
    Attaluri, G.
    Chainani, N.
    Lightstone, S.
    Sharpe, D.
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2014, 8 (04): : 353 - 364
  • [38] Memory-Efficient Fixpoint Computation
    Kim, Sung Kook
    Venet, Arnaud J.
    Thakur, Aditya, V
    STATIC ANALYSIS (SAS 2020), 2020, 12389 : 35 - 64
  • [39] PA-NAS: Partial operation activation for memory-efficient architecture search
    Diao, Huabin
    Li, Gongyan
    Xu, Shaoyun
    Hao, Yuexing
    APPLIED INTELLIGENCE, 2022, 52 (08) : 9373 - 9387
  • [40] Memory-Efficient Models for Scene Text Recognition via Neural Architecture Search
    Hong, SeulGi
    Kim, DongHyun
    Choi, Min-Kook
    2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS (WACVW), 2020, : 183 - 191