Computational optimal transport for molecular spectra: The fully discrete case

被引:9
|
作者
Seifert, Nathan A. [1 ,2 ]
Prozument, Kirill [1 ]
Davis, Michael J. [1 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
[2] Univ New Haven, Dept Chem & Chem & Biomed Engn, 300 Boston Post Rd, West Haven, CT 06516 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2021年 / 155卷 / 18期
关键词
ORION-KL; SPECTROSCOPY; ALGORITHMS; PREDICTION; CLUSTERS; DISTANCE; WATER;
D O I
10.1063/5.0069681
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The use of computational optimal transport is investigated as a tool for comparing two molecular spectra. Unlike other techniques for comparing molecular spectra in a pattern-recognition framework, transport distances simultaneously encode information about line positions and intensities. In addition, it is shown that transport distances are a useful alternative to Euclidean distances as Euclidean distances are based on line-by-line comparisons, while transport distances reflect broader features of molecular spectra and adequately compare spectra with different resolutions. This paper includes a tutorial on the use of optimal transport and investigates several well-chosen examples to illustrate the utility of computational optimal transport for comparing molecular spectra.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Point Clouds Matching Based on Discrete Optimal Transport
    Ma, Litao
    Bian, Wei
    Xue, Xiaoping
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 5650 - 5662
  • [42] Formulating Discrete Probability Flow Through Optimal Transport
    Zhang, Pengze
    Yin, Hubery
    Li, Chen
    Xie, Xiaohua
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [43] Computation of optimal transport on discrete metric measure spaces
    Matthias Erbar
    Martin Rumpf
    Bernhard Schmitzer
    Stefan Simon
    Numerische Mathematik, 2020, 144 : 157 - 200
  • [44] Fast Algorithms for Computational Optimal Transport and Wasserstein Barycenter
    Guo, Wenshuo
    Ho, Nhat
    Jordan, Michael I.
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 2088 - 2096
  • [45] Computational approach to optimal transport network construction in biomechanics
    Kizilova, N
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2004, PT 2, 2004, 3044 : 476 - 485
  • [46] On Robust Optimal Transport: Computational Complexity and Barycenter Computation
    Khang Le
    Huy Nguyen
    Quang Minh Nguyen
    Tung Pham
    Hung Bui
    Nhat Ho
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [47] Stochastic transport with Lévy noise fully discrete numerical approximation
    Stein, Andreas
    Barth, Andrea
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2025, 227 : 347 - 370
  • [48] Fully coupled discrete element method for graded particles transport in pipes
    Zhou, You
    Shi, Huabin
    Li, Jiaxing
    Chen, Xin
    PHYSICS OF FLUIDS, 2024, 36 (05)
  • [49] Computational approaches for electronic transport in molecular devices
    Car, R
    Gebauer, R
    QUANTUM PHENOMENA IN MESOSCOPIC SYSTEMS, 2003, 151 : 107 - 133
  • [50] Masserstein: Linear regression of mass spectra by optimal transport
    Ciach, Michal Aleksander
    Miasojedow, Blazej
    Skoraczynski, Grzegorz
    Majewski, Szymon
    Startek, Michal
    Valkenborg, Dirk
    Gambin, Anna
    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2021,