Computational optimal transport for molecular spectra: The fully discrete case

被引:9
|
作者
Seifert, Nathan A. [1 ,2 ]
Prozument, Kirill [1 ]
Davis, Michael J. [1 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
[2] Univ New Haven, Dept Chem & Chem & Biomed Engn, 300 Boston Post Rd, West Haven, CT 06516 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2021年 / 155卷 / 18期
关键词
ORION-KL; SPECTROSCOPY; ALGORITHMS; PREDICTION; CLUSTERS; DISTANCE; WATER;
D O I
10.1063/5.0069681
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The use of computational optimal transport is investigated as a tool for comparing two molecular spectra. Unlike other techniques for comparing molecular spectra in a pattern-recognition framework, transport distances simultaneously encode information about line positions and intensities. In addition, it is shown that transport distances are a useful alternative to Euclidean distances as Euclidean distances are based on line-by-line comparisons, while transport distances reflect broader features of molecular spectra and adequately compare spectra with different resolutions. This paper includes a tutorial on the use of optimal transport and investigates several well-chosen examples to illustrate the utility of computational optimal transport for comparing molecular spectra.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Martingale optimal transport in the discrete case via simple linear programming techniques
    Nicole Bäuerle
    Daniel Schmithals
    Mathematical Methods of Operations Research, 2019, 90 : 453 - 476
  • [22] COMPUTATIONAL METHODS FOR ADAPTED OPTIMAL TRANSPORT
    Eckstein, Stephan
    Pammer, Gudmund
    ANNALS OF APPLIED PROBABILITY, 2024, 34 (1A): : 675 - 713
  • [23] Fully discrete schemes for monotone optimal control problems
    Aragone, Laura S.
    Parente, Lisandro A.
    Philipp, Eduardo A.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (02): : 1047 - 1065
  • [24] Fully discrete schemes for monotone optimal control problems
    Laura S. Aragone
    Lisandro A. Parente
    Eduardo A. Philipp
    Computational and Applied Mathematics, 2018, 37 : 1047 - 1065
  • [25] OPTIMAL DISCRETE WINDOW FOR CALCULATION OF POWER SPECTRA
    EBERHARD, A
    IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS, 1973, AU21 (01): : 37 - 43
  • [26] Initialization Procedures for Discrete and Semi-Discrete Optimal Transport
    Meyron, Jocelyn
    COMPUTER-AIDED DESIGN, 2019, 115 : 13 - 22
  • [27] Semi-discrete optimal transport: a solution procedure for the unsquared Euclidean distance case
    Valentin Hartmann
    Dominic Schuhmacher
    Mathematical Methods of Operations Research, 2020, 92 : 133 - 163
  • [28] Semi-discrete optimal transport: a solution procedure for the unsquared Euclidean distance case
    Hartmann, Valentin
    Schuhmacher, Dominic
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2020, 92 (01) : 133 - 163
  • [29] Discrete Optimal Transport: Complexity, Geometry and Applications
    Quentin Mérigot
    Édouard Oudet
    Discrete & Computational Geometry, 2016, 55 : 263 - 283
  • [30] Discrete Optimal Transport: Complexity, Geometry and Applications
    Merigot, Quentin
    Oudet, Edouard
    DISCRETE & COMPUTATIONAL GEOMETRY, 2016, 55 (02) : 263 - 283