Computational optimal transport for molecular spectra: The fully discrete case

被引:9
|
作者
Seifert, Nathan A. [1 ,2 ]
Prozument, Kirill [1 ]
Davis, Michael J. [1 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
[2] Univ New Haven, Dept Chem & Chem & Biomed Engn, 300 Boston Post Rd, West Haven, CT 06516 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2021年 / 155卷 / 18期
关键词
ORION-KL; SPECTROSCOPY; ALGORITHMS; PREDICTION; CLUSTERS; DISTANCE; WATER;
D O I
10.1063/5.0069681
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The use of computational optimal transport is investigated as a tool for comparing two molecular spectra. Unlike other techniques for comparing molecular spectra in a pattern-recognition framework, transport distances simultaneously encode information about line positions and intensities. In addition, it is shown that transport distances are a useful alternative to Euclidean distances as Euclidean distances are based on line-by-line comparisons, while transport distances reflect broader features of molecular spectra and adequately compare spectra with different resolutions. This paper includes a tutorial on the use of optimal transport and investigates several well-chosen examples to illustrate the utility of computational optimal transport for comparing molecular spectra.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] COMPUTATIONAL METHODS FOR MARTINGALE OPTIMAL TRANSPORT PROBLEMS
    Guo, Gaoyue
    Obloj, Jan
    ANNALS OF APPLIED PROBABILITY, 2019, 29 (06): : 3311 - 3347
  • [32] Computational Optimal Transport and Filtering on Riemannian Manifolds
    Grange, Daniel
    Al-Jarrah, Mohammad
    Baptista, Ricardo
    Taghvaei, Amirhossein
    Georgiou, Tryphon T.
    Phillips, Sean
    Tannenbaum, Allen
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 3495 - 3500
  • [33] A discrete method for the initialization of semi-discrete optimal transport problem
    Lin, Judy Yangjun
    Guo, Shaoyan
    Xie, Longhan
    Du, Ruxu
    Xu, Gu
    KNOWLEDGE-BASED SYSTEMS, 2021, 212
  • [34] COMPUTATIONAL ASPECTS OF DISCRETE-TIME OPTIMAL-CONTROL
    YAKOWITZ, S
    RUTHERFORD, B
    APPLIED MATHEMATICS AND COMPUTATION, 1984, 15 (01) : 29 - 45
  • [36] Fast and Accurate Approximations of the Optimal Transport in Semi-Discrete and Discrete Settings
    Agarwal, Pankaj K.
    Raghvendra, Sharath
    Shirzadian, Pouyan
    Yao, Keegan
    PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2024, : 4514 - 4529
  • [37] Computation of optimal transport on discrete metric measure spaces
    Erbar, Matthias
    Rumpf, Martin
    Schmitzer, Bernhard
    Simon, Stefan
    NUMERISCHE MATHEMATIK, 2020, 144 (01) : 157 - 200
  • [38] Dynamic Multiagent Assignment Via Discrete Optimal Transport
    Kachar, Koray Gabriel
    Gorodetsky, Alex Arkady
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2022, 9 (01): : 151 - 162
  • [39] A discrete Schrodinger equation via optimal transport on graphs
    Chow, Shui-Nee
    Li, Wuchen
    Zhou, Haomin
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (08) : 2440 - 2469
  • [40] Homogenisation of one-dimensional discrete optimal transport
    Gladbach, Peter
    Kopfer, Eva
    Maas, Jan
    Portinale, Lorenzo
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 139 : 204 - 234