Computational optimal transport for molecular spectra: The fully discrete case

被引:9
|
作者
Seifert, Nathan A. [1 ,2 ]
Prozument, Kirill [1 ]
Davis, Michael J. [1 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
[2] Univ New Haven, Dept Chem & Chem & Biomed Engn, 300 Boston Post Rd, West Haven, CT 06516 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2021年 / 155卷 / 18期
关键词
ORION-KL; SPECTROSCOPY; ALGORITHMS; PREDICTION; CLUSTERS; DISTANCE; WATER;
D O I
10.1063/5.0069681
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The use of computational optimal transport is investigated as a tool for comparing two molecular spectra. Unlike other techniques for comparing molecular spectra in a pattern-recognition framework, transport distances simultaneously encode information about line positions and intensities. In addition, it is shown that transport distances are a useful alternative to Euclidean distances as Euclidean distances are based on line-by-line comparisons, while transport distances reflect broader features of molecular spectra and adequately compare spectra with different resolutions. This paper includes a tutorial on the use of optimal transport and investigates several well-chosen examples to illustrate the utility of computational optimal transport for comparing molecular spectra.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Computational optimal transport for molecular spectra: The fully continuous case
    Seifert, Nathan A.
    Prozument, Kirill
    Davis, Michael J.
    JOURNAL OF CHEMICAL PHYSICS, 2023, 159 (16):
  • [2] Computational optimal transport for molecular spectra: The semi-discrete case
    Seifert, Nathan A.
    Prozument, Kirill
    Davis, Michael J.
    JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (13):
  • [3] Computational semi-discrete optimal transport with general storage fees
    Bansil, Mohit
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 503 (01)
  • [4] Computational Optimal Transport
    Peyre, Gabriel
    Cuturi, Marco
    FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2019, 11 (5-6): : 355 - 607
  • [5] Regularized Discrete Optimal Transport
    Ferradans, Sira
    Papadakis, Nicolas
    Peyre, Gabriel
    Aujol, Jean-Francois
    SIAM JOURNAL ON IMAGING SCIENCES, 2014, 7 (03): : 1853 - 1882
  • [6] COMPUTATIONAL METHODS IN DISCRETE OPTIMAL CONTROL
    CANON, MD
    SIAM REVIEW, 1968, 10 (04) : 470 - &
  • [7] Discrete Wasserstein barycenters: optimal transport for discrete data
    Ethan Anderes
    Steffen Borgwardt
    Jacob Miller
    Mathematical Methods of Operations Research, 2016, 84 : 389 - 409
  • [8] Discrete Wasserstein barycenters: optimal transport for discrete data
    Anderes, Ethan
    Borgwardt, Steffen
    Miller, Jacob
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2016, 84 (02) : 389 - 409
  • [9] On the geometry of geodesics in discrete optimal transport
    Erbar, Matthias
    Maas, Jan
    Wirth, Melchior
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (01)
  • [10] SCALING LIMITS OF DISCRETE OPTIMAL TRANSPORT
    Gladbach, Peter
    Kopfer, Eva
    Maas, Jan
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (03) : 2759 - 2802