LOCAL FOURIER ANALYSIS OF MULTIGRID FOR HYBRIDIZED AND EMBEDDED DISCONTINUOUS GALERKIN METHODS

被引:3
|
作者
He, Yunhui [1 ]
Rhebergen, Sander [1 ]
De Sterck, Hans [1 ]
机构
[1] Univ Waterloo, Dept Appl Math, 200 Univ Ave W, Waterloo, ON N2L 3G1, Canada
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2021年 / 43卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
preconditioning; embedded and hybridized discontinuous Galerkin methods; geometric multigrid; local Fourier analysis; FINITE-ELEMENT-METHOD; DISCRETIZATIONS; ALGORITHM; HDG; SMOOTHER; CG;
D O I
10.1137/20M1346985
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a geometric multigrid method with Jacobi and Vanka relaxation for hybridized and embedded discontinuous Galerkin discretizations of the Laplacian. We present a local Fourier analysis (LFA) of the two-grid error-propagation operator and show that the multigrid method applied to an embedded discontinuous Galerkin (EDG) discretization is almost as efficient as when applied to a continuous Galerkin discretization. We furthermore show that multigrid applied to an EDG discretization outperforms multigrid applied to a hybridized discontinuous Galerkin discretization. Numerical examples verify our LFA predictions.
引用
收藏
页码:S612 / S636
页数:25
相关论文
共 50 条