LOCAL FOURIER ANALYSIS OF MULTIGRID FOR HYBRIDIZED AND EMBEDDED DISCONTINUOUS GALERKIN METHODS

被引:3
|
作者
He, Yunhui [1 ]
Rhebergen, Sander [1 ]
De Sterck, Hans [1 ]
机构
[1] Univ Waterloo, Dept Appl Math, 200 Univ Ave W, Waterloo, ON N2L 3G1, Canada
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2021年 / 43卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
preconditioning; embedded and hybridized discontinuous Galerkin methods; geometric multigrid; local Fourier analysis; FINITE-ELEMENT-METHOD; DISCRETIZATIONS; ALGORITHM; HDG; SMOOTHER; CG;
D O I
10.1137/20M1346985
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a geometric multigrid method with Jacobi and Vanka relaxation for hybridized and embedded discontinuous Galerkin discretizations of the Laplacian. We present a local Fourier analysis (LFA) of the two-grid error-propagation operator and show that the multigrid method applied to an embedded discontinuous Galerkin (EDG) discretization is almost as efficient as when applied to a continuous Galerkin discretization. We furthermore show that multigrid applied to an EDG discretization outperforms multigrid applied to a hybridized discontinuous Galerkin discretization. Numerical examples verify our LFA predictions.
引用
收藏
页码:S612 / S636
页数:25
相关论文
共 50 条
  • [31] Algebraic multigrid techniques for discontinuous Galerkin methods with varying polynomial order
    Siefert, C.
    Tuminaro, R.
    Gerstenberger, A.
    Scovazzi, G.
    Collis, S. S.
    COMPUTATIONAL GEOSCIENCES, 2014, 18 (05) : 597 - 612
  • [32] Local discontinuous Galerkin methods for the Stokes system
    Cockburn, B
    Kanschat, G
    Schotzau, D
    Schwab, C
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (01) : 319 - 343
  • [33] Preconditioning methods for local discontinuous Galerkin discretizations
    Kanschat, G
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (03): : 815 - 831
  • [34] Local discontinuous Galerkin methods for elliptic problems
    Castillo, P
    Cockburn, B
    Perugia, I
    Schötzau, D
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2002, 18 (01): : 69 - 75
  • [35] Local discontinuous Galerkin methods for incompressible flow
    Schtözau, D
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 1116 - 1118
  • [36] Local Fourier Analysis of Multigrid Methods with Polynomial Smoothers and Aggressive Coarsening
    Brannick, James
    Hu, Xiaozhe
    Rodrigo, Carmen
    Zikatanov, Ludmil
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2015, 8 (01): : 1 - 21
  • [37] ON LOCAL FOURIER ANALYSIS OF MULTIGRID METHODS FOR PDEs WITH JUMPING AND RANDOM COEFFICIENTS
    Kumar, Prashant
    Rodrigo, Carmen
    Gaspar, Francisco J.
    Oosterlee, Cornelis W.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (03): : A1385 - A1413
  • [38] Local analysis of discontinuous Galerkin methods applied to singularly perturbed problems
    Center for Applied Mathematics, Cornell University, 657 Rhodes Hall, Ithaca, NY 14853
    J. Numer. Math., 2006, 1 (41-56):
  • [39] Local randomized neural networks with hybridized discontinuous Petrov-Galerkin methods for Stokes-Darcy flows
    Dang, Haoning
    Wang, Fei
    PHYSICS OF FLUIDS, 2024, 36 (08)
  • [40] EFFICIENT MULTIGRID SOLUTION OF ELLIPTIC INTERFACE PROBLEMS USING VISCOSITY-UPWINDED LOCAL DISCONTINUOUS GALERKIN METHODS
    Saye, Robert, I
    COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2019, 14 (02) : 247 - 283