LOCAL FOURIER ANALYSIS OF MULTIGRID FOR HYBRIDIZED AND EMBEDDED DISCONTINUOUS GALERKIN METHODS

被引:3
|
作者
He, Yunhui [1 ]
Rhebergen, Sander [1 ]
De Sterck, Hans [1 ]
机构
[1] Univ Waterloo, Dept Appl Math, 200 Univ Ave W, Waterloo, ON N2L 3G1, Canada
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2021年 / 43卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
preconditioning; embedded and hybridized discontinuous Galerkin methods; geometric multigrid; local Fourier analysis; FINITE-ELEMENT-METHOD; DISCRETIZATIONS; ALGORITHM; HDG; SMOOTHER; CG;
D O I
10.1137/20M1346985
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a geometric multigrid method with Jacobi and Vanka relaxation for hybridized and embedded discontinuous Galerkin discretizations of the Laplacian. We present a local Fourier analysis (LFA) of the two-grid error-propagation operator and show that the multigrid method applied to an embedded discontinuous Galerkin (EDG) discretization is almost as efficient as when applied to a continuous Galerkin discretization. We furthermore show that multigrid applied to an EDG discretization outperforms multigrid applied to a hybridized discontinuous Galerkin discretization. Numerical examples verify our LFA predictions.
引用
收藏
页码:S612 / S636
页数:25
相关论文
共 50 条
  • [21] Fourier analysis of the local discontinuous Galerkin method for the linearized KdV equation
    Le Roux, Daniel Y.
    GEM-INTERNATIONAL JOURNAL ON GEOMATHEMATICS, 2022, 13 (01)
  • [22] Multigrid algorithms for symmetric discontinuous Galerkin methods on graded meshes
    S. C. Brenner
    J. Cui
    T. Gudi
    L.-Y. Sung
    Numerische Mathematik, 2011, 119 : 21 - 47
  • [23] Multigrid algorithms for symmetric discontinuous Galerkin methods on graded meshes
    Brenner, S. C.
    Cui, J.
    Gudi, T.
    Sung, L. -Y.
    NUMERISCHE MATHEMATIK, 2011, 119 (01) : 21 - 47
  • [24] TUNING MULTIGRID METHODS WITH ROBUST OPTIMIZATION AND LOCAL FOURIER ANALYSIS
    Brown, Jed
    He, Yunhui
    MacLachlan, Scott
    Menickelly, Matt
    Wild, Stefan M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (01): : A109 - A138
  • [25] Multigrid methods for Hdiv-conforming discontinuous Galerkin methods for the Stokes equations
    Kanschat, Guido
    Mao, Youli
    JOURNAL OF NUMERICAL MATHEMATICS, 2015, 23 (01) : 51 - 66
  • [26] Adaptive H(div)-Conforming Embedded-Hybridized Discontinuous Galerkin Finite Element Methods for the Stokes Problems
    Han, Yihui
    Leng, Haitao
    CSIAM TRANSACTIONS ON APPLIED MATHEMATICS, 2022, 3 (01): : 82 - 108
  • [27] An embedded-hybridized discontinuous Galerkin finite element method for the Stokes equations
    Rhebergen, Sander
    Wells, Garth N.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 358
  • [28] Hybrid multigrid methods for high-order discontinuous Galerkin discretizations
    Fehn, Niklas
    Munch, Peter
    Wall, Wolfgang A.
    Kronbichler, Martin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 415
  • [29] A PERFORMANCE COMPARISON OF CONTINUOUS AND DISCONTINUOUS GALERKIN METHODS WITH FAST MULTIGRID SOLVERS
    Kronbichler, Martin
    Wall, Wolfgang A.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (05): : A3423 - A3448
  • [30] Algebraic multigrid techniques for discontinuous Galerkin methods with varying polynomial order
    C. Siefert
    R. Tuminaro
    A. Gerstenberger
    G. Scovazzi
    S. S. Collis
    Computational Geosciences, 2014, 18 : 597 - 612