SU (1,1) and SU (2) Perelomov number coherent states: algebraic approach for general systems

被引:4
|
作者
Ojeda-Guillen, D. [1 ]
Salazar-Ramirez, M. [1 ]
Mota, R. D. [2 ]
Granados, V. D. [3 ]
机构
[1] Inst Politecn Nacl, Escuela Super Computo, Ave Juan de Dios Batiz Esq, Mexico City 07738, DF, Mexico
[2] Inst Politecn Nacl, Unidad Culhuacan, Escuela Super Ingn Mecan & Elect, Ave Santa Ana 1000,Col San Francisco Culhuacan, Mexico City 04430, DF, Mexico
[3] Inst Politecn Nacl, Escuela Super Fis & Matemat, Unidad Profes Adolfo Lopez Mateos, Ed 9, Mexico City 07738, DF, Mexico
关键词
coherent states; Lie algebras; pseudoharmonic oscillator; two-dimensional harmonic oscillator; HARMONIC-OSCILLATOR; SU(1,1); SU(2); PHASE;
D O I
10.1080/14029251.2016.1248158
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study some properties of the SU (1, 1) Perelomov number coherent states. The Schrodinger's uncertainty relationship is evaluated for a position and momentum-like operators (constructed from the Lie algebra generators) in these number coherent states. It is shown that this relationship is minimized for the standard coherent states. We obtain the time evolution of the number coherent states by supposing that the Hamiltonian is proportional to the third generator K-0 of the su (1, 1) Lie algebra. Analogous results for the SU (2) Perelomov number coherent states are found. As examples, we compute the Perelomov coherent states for the pseudoharmonic oscillator and the two-dimensional isotropic harmonic oscillator.
引用
收藏
页码:607 / 619
页数:13
相关论文
共 50 条
  • [41] Maximally Entangled SU(1,1) Semi Coherent States
    A.-S. F. Obada
    M. M. A. Ahmed
    Hoda A. Ali
    Somia Abd-Elnabi
    S. Sanad
    International Journal of Theoretical Physics, 2021, 60 : 1425 - 1437
  • [42] Quantum Fisher Information for su(2) Atomic Coherent States and su(1, 1) Coherent States
    Qi Song
    Honggang Liu
    Yuefeng Zhao
    Yan Zeng
    Gangcheng Wang
    Kang Xue
    International Journal of Theoretical Physics, 2016, 55 : 1679 - 1685
  • [43] COHERENT STATES, SQUEEZED FLUCTUATIONS, AND THE SU(2) AND SU(1,1) GROUPS IN QUANTUM-OPTICS APPLICATIONS
    WODKIEWICZ, K
    EBERLY, JH
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1985, 2 (03) : 458 - 466
  • [44] NONCLASSICAL PROPERTIES OF 2-MODE SU(1,1) COHERENT STATES
    GILLES, L
    KNIGHT, PL
    JOURNAL OF MODERN OPTICS, 1992, 39 (07) : 1411 - 1440
  • [45] Perelomov and Barut-Girardello Su(1,1) coherent states for harmonic oscillator in one-dimensional half space
    Liu, Q. H.
    Zhuo, H.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (12): : 2635 - 2644
  • [46] UNIFIED APPROACH TO REPRESENTATION OF GROUPS SU(2) AND SU(1,1)
    YOUNG, KC
    CANADIAN JOURNAL OF PHYSICS, 1970, 48 (10) : 1272 - &
  • [47] Entanglement conditions for mixed SU(2) and SU(1,1) systems
    Yan, Dong
    Pu, Zhongsheng
    Song, Lijun
    Wang, Xiaoguang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2008, 47 (05) : 1432 - 1440
  • [48] SU(2) andSU(1,1) algebra eigenstates: A unified analytic approach to coherent and intelligent states
    Constantin Brif
    International Journal of Theoretical Physics, 1997, 36 : 1651 - 1682
  • [49] SU(2) AND SU(1,1) INTERFEROMETERS
    YURKE, B
    MCCALL, SL
    KLAUDER, JR
    PHYSICAL REVIEW A, 1986, 33 (06): : 4033 - 4054
  • [50] Matter-wave squeezing and the generation of SU(1,1) and SU(2) coherent states via Feshbach resonances
    Tikhonenkov, I.
    Pazy, E.
    Band, Y. B.
    Vardi, A.
    PHYSICAL REVIEW A, 2008, 77 (06):