SU (1,1) and SU (2) Perelomov number coherent states: algebraic approach for general systems

被引:4
|
作者
Ojeda-Guillen, D. [1 ]
Salazar-Ramirez, M. [1 ]
Mota, R. D. [2 ]
Granados, V. D. [3 ]
机构
[1] Inst Politecn Nacl, Escuela Super Computo, Ave Juan de Dios Batiz Esq, Mexico City 07738, DF, Mexico
[2] Inst Politecn Nacl, Unidad Culhuacan, Escuela Super Ingn Mecan & Elect, Ave Santa Ana 1000,Col San Francisco Culhuacan, Mexico City 04430, DF, Mexico
[3] Inst Politecn Nacl, Escuela Super Fis & Matemat, Unidad Profes Adolfo Lopez Mateos, Ed 9, Mexico City 07738, DF, Mexico
关键词
coherent states; Lie algebras; pseudoharmonic oscillator; two-dimensional harmonic oscillator; HARMONIC-OSCILLATOR; SU(1,1); SU(2); PHASE;
D O I
10.1080/14029251.2016.1248158
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study some properties of the SU (1, 1) Perelomov number coherent states. The Schrodinger's uncertainty relationship is evaluated for a position and momentum-like operators (constructed from the Lie algebra generators) in these number coherent states. It is shown that this relationship is minimized for the standard coherent states. We obtain the time evolution of the number coherent states by supposing that the Hamiltonian is proportional to the third generator K-0 of the su (1, 1) Lie algebra. Analogous results for the SU (2) Perelomov number coherent states are found. As examples, we compute the Perelomov coherent states for the pseudoharmonic oscillator and the two-dimensional isotropic harmonic oscillator.
引用
收藏
页码:607 / 619
页数:13
相关论文
共 50 条
  • [22] ON THE CONSTRUCTION OF GENERALIZED SU(1,1) COHERENT STATES
    Berrada, K.
    El Baz, M.
    Hassouni, Y.
    REPORTS ON MATHEMATICAL PHYSICS, 2011, 68 (01) : 23 - 35
  • [23] Time evolution of SU(1,1) coherent states
    Zalesny, J.
    Acta Physica Polonica A, 2001, 98 (1-2) : 11 - 22
  • [24] DYNAMICS OF PULSED SU(1,1) COHERENT STATES
    GERRY, CC
    VRSCAY, ER
    PHYSICAL REVIEW A, 1989, 39 (11): : 5717 - 5724
  • [25] Completeness relations for SU(1,1)-coherent states
    Wünsche, A
    Vourdas, A
    GROUP 22: PROCEEDINGS OF THE XII INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS, 1998, : 479 - 483
  • [26] Algebraic approach and Berry phase of a Hamiltonian with a general SU(1,1) symmetry
    Choreno, E.
    Valencia, R.
    Ojeda-Guillen, D.
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (07)
  • [27] Time evolution of Su(1,1) coherent states
    Zalesny, J
    ACTA PHYSICA POLONICA A, 2000, 98 (1-2) : 11 - 22
  • [28] Intelligent states in SU(2) and SU(1,1) interferometry
    Perinová, V
    Luks, A
    Krepelka, J
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2000, 2 (02) : 81 - 89
  • [29] SU(1,1) and SU(2) approaches to the radial oscillator: Generalized coherent states and squeezing of variances
    Rosas-Ortiz, Oscar
    Cruz y Cruz, Sara
    Enriquez, Marco
    ANNALS OF PHYSICS, 2016, 373 : 346 - 373
  • [30] Quantum engineering and nonclassical properties of SU(1,1) and SU(2) entangled nonlinear coherent states
    Karimi, Amir
    Tavassoly, Mohammad Kazem
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2014, 31 (10) : 2345 - 2353