SU (1,1) and SU (2) Perelomov number coherent states: algebraic approach for general systems

被引:4
|
作者
Ojeda-Guillen, D. [1 ]
Salazar-Ramirez, M. [1 ]
Mota, R. D. [2 ]
Granados, V. D. [3 ]
机构
[1] Inst Politecn Nacl, Escuela Super Computo, Ave Juan de Dios Batiz Esq, Mexico City 07738, DF, Mexico
[2] Inst Politecn Nacl, Unidad Culhuacan, Escuela Super Ingn Mecan & Elect, Ave Santa Ana 1000,Col San Francisco Culhuacan, Mexico City 04430, DF, Mexico
[3] Inst Politecn Nacl, Escuela Super Fis & Matemat, Unidad Profes Adolfo Lopez Mateos, Ed 9, Mexico City 07738, DF, Mexico
关键词
coherent states; Lie algebras; pseudoharmonic oscillator; two-dimensional harmonic oscillator; HARMONIC-OSCILLATOR; SU(1,1); SU(2); PHASE;
D O I
10.1080/14029251.2016.1248158
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study some properties of the SU (1, 1) Perelomov number coherent states. The Schrodinger's uncertainty relationship is evaluated for a position and momentum-like operators (constructed from the Lie algebra generators) in these number coherent states. It is shown that this relationship is minimized for the standard coherent states. We obtain the time evolution of the number coherent states by supposing that the Hamiltonian is proportional to the third generator K-0 of the su (1, 1) Lie algebra. Analogous results for the SU (2) Perelomov number coherent states are found. As examples, we compute the Perelomov coherent states for the pseudoharmonic oscillator and the two-dimensional isotropic harmonic oscillator.
引用
收藏
页码:607 / 619
页数:13
相关论文
共 50 条
  • [31] The Buck-Sukumar model described in terms of su(2) ⊗ su(1,1) coherent states
    Cordeiro, F.
    Providencia, C.
    da Providencia, J.
    Nishiyama, S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (40) : 12153 - 12160
  • [32] Fidelity Susceptibility in the SU(2) and SU(1,1) Algebraic Structure Models
    Zhang Hong-Biao
    Tian Li-Jun
    CHINESE PHYSICS LETTERS, 2010, 27 (05)
  • [33] Coherent states, displaced number states and Laguerre polynomial states for su(1,1) Lie algebra
    Wang, XG
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2000, 14 (10): : 1093 - 1103
  • [34] Engineering SU(1,1) ⊗ SU(1,1) vibrational states
    Huerta Alderete, C.
    Morales Rodriguez, M. P.
    Rodriguez-Lara, B. M.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [35] SU(1,1) coherent states as Bessel-Gauss states
    Hacyan, S.
    REVISTA MEXICANA DE FISICA, 2008, 54 (06) : 451 - 453
  • [36] Entropy of entangled states and SU(1,1) and SU(2) symmetries
    Santana, AE
    Khanna, FC
    Revzen, M
    PHYSICAL REVIEW A, 2002, 65 (03): : 1 - 6
  • [37] Maximally Entangled SU(1,1) Semi Coherent States
    Obada, A. -S. F.
    Ahmed, M. M. A.
    Ali, Hoda A.
    Abd-Elnabi, Somia
    Sanad, S.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (04) : 1425 - 1437
  • [38] Statistical properties of the nonlinear SU(1,1) coherent states
    Song, TQ
    Fan, HY
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2002, 37 (05) : 593 - 596
  • [39] THE UNIVERSAL PROPAGATOR FOR AFFINE [OR SU(1,1)] COHERENT STATES
    KLAUDER, JR
    TOME, WA
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (11) : 3700 - 3709
  • [40] Two-mode coherent states for SU(1,1)⊗SU(1,1) -: art. no. 033812
    Gerry, CC
    Benmoussa, A
    PHYSICAL REVIEW A, 2000, 62 (03): : 15