SU (1,1) and SU (2) Perelomov number coherent states: algebraic approach for general systems

被引:4
|
作者
Ojeda-Guillen, D. [1 ]
Salazar-Ramirez, M. [1 ]
Mota, R. D. [2 ]
Granados, V. D. [3 ]
机构
[1] Inst Politecn Nacl, Escuela Super Computo, Ave Juan de Dios Batiz Esq, Mexico City 07738, DF, Mexico
[2] Inst Politecn Nacl, Unidad Culhuacan, Escuela Super Ingn Mecan & Elect, Ave Santa Ana 1000,Col San Francisco Culhuacan, Mexico City 04430, DF, Mexico
[3] Inst Politecn Nacl, Escuela Super Fis & Matemat, Unidad Profes Adolfo Lopez Mateos, Ed 9, Mexico City 07738, DF, Mexico
关键词
coherent states; Lie algebras; pseudoharmonic oscillator; two-dimensional harmonic oscillator; HARMONIC-OSCILLATOR; SU(1,1); SU(2); PHASE;
D O I
10.1080/14029251.2016.1248158
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study some properties of the SU (1, 1) Perelomov number coherent states. The Schrodinger's uncertainty relationship is evaluated for a position and momentum-like operators (constructed from the Lie algebra generators) in these number coherent states. It is shown that this relationship is minimized for the standard coherent states. We obtain the time evolution of the number coherent states by supposing that the Hamiltonian is proportional to the third generator K-0 of the su (1, 1) Lie algebra. Analogous results for the SU (2) Perelomov number coherent states are found. As examples, we compute the Perelomov coherent states for the pseudoharmonic oscillator and the two-dimensional isotropic harmonic oscillator.
引用
收藏
页码:607 / 619
页数:13
相关论文
共 50 条
  • [1] SU(1, 1) and SU(2) Perelomov number coherent states: algebraic approach for general systems
    D. Ojeda-Guillén
    M. Salazar-Ramírez
    R. D. Mota
    V. D. Granados
    Journal of Nonlinear Mathematical Physics, 2016, 23 : 607 - 619
  • [2] Perelomov SU(1,1) coherent superposition states
    Wang, Xiaoguang
    Yu, Rongjin
    Changsha Tiedao Xuyuan Xuebao/Journal of Changsha Railway University, 1999, 17 (02): : 865 - 868
  • [3] The SU(1,1) Perelomov number coherent states and the non-degenerate parametric amplifier
    Ojeda-Guillen, D.
    Mota, R. D.
    Granados, V. D.
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (04)
  • [4] Generation of a class of SU(1,1) coherent states of the Gilmore-Perelomov type and a class of SU(2) coherent states and their superposition
    Miry, S. R.
    Tavassoly, M. K.
    PHYSICA SCRIPTA, 2012, 85 (03)
  • [5] Entangled coherent states for systems with SU(2) and SU(1,1) symmetries
    Wang, XG
    Sanders, BC
    Pan, SH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (41): : 7451 - 7467
  • [6] SU(1,1) SQUEEZING OF SU(1,1) GENERALIZED COHERENT STATES
    BUZEK, V
    JOURNAL OF MODERN OPTICS, 1990, 37 (03) : 303 - 316
  • [7] Quantum Fisher Information for su (2) Atomic Coherent States and su (1,1) Coherent States
    Song, Qi
    Liu, Honggang
    Zhao, Yuefeng
    Zeng, Yan
    Wang, Gangcheng
    Xue, Kang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2016, 55 (03) : 1679 - 1685
  • [8] ON THE STATISTICS OF SU(1,1)(Q) AND SU(2)(Q) COHERENT STATES
    JING, SC
    FAN, HY
    MODERN PHYSICS LETTERS A, 1995, 10 (08) : 687 - 694
  • [9] SU(2) and SU(1,1) algebra eigenstates: A unified analytic approach to coherent and intelligent states
    Brif, C
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1997, 36 (07) : 1651 - 1682