A Markov Chain Monte Carlo technique for parameter estimation and inference in pesticide fate and transport modeling

被引:11
|
作者
Boulange, Julien [1 ]
Watanabe, Hirozumi [1 ]
Akai, Shinpei [1 ]
机构
[1] Tokyo Univ Agr & Technol, Tokyo, Japan
关键词
Rice paddy; Pesticide fate and transport; Markov Chain Monte Carlo (MCMC); Inverse modeling; PCPF-1; model; BAYESIAN-INFERENCE; SIMULATION-MODEL; RISK-ASSESSMENT; RICE PADDIES; SURFACE SOIL; UNCERTAINTY; WATER; RUNOFF; CONVERGENCE; EXPOSURE;
D O I
10.1016/j.ecolmodel.2017.07.011
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
A Bayesian method involving Markov Chain Monte Carlo (MCMC) technique was implemented into a pesticide fate and transport model to estimate the best input parameter ranges while considering uncertainties included in both the observed pesticide concentrations and in the model. The methodology used for integrating the MCMC technique into a pollutant fate and transport models was detailed. The uncertainties encompassed in the dissolution rate and in the adsorption coefficient of the herbicide mefenacet were greatly reduced by the MCMC simulations. In addition, an optimal set of input parameters extracted from the MCMC simulations accurately reproduced mefenacet concentrations in paddy water and paddy soil as compared to the original published dataset. Consequently, by simultaneously optimizing multiple parameters of environmental models and conducting uncertainty analysis, MCMC technique exhibits powerful capability for improving the reliability and accuracy of computer models. The main strengths of the MCMC methodology are: (1) the consideration of uncertainties from both input parameters and observations and (2) the prior distributions of the input parameters which can be reformulate when additional knowledge is available. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:270 / 278
页数:9
相关论文
共 50 条
  • [41] Nonlinear Parameter Estimation: Comparison of an Ensemble Kalman Smoother with a Markov Chain Monte Carlo Algorithm
    Posselt, Derek J.
    Bishop, Craig H.
    MONTHLY WEATHER REVIEW, 2012, 140 (06) : 1957 - 1974
  • [42] A Bayesian Monte Carlo Markov Chain Method for Parameter Estimation of Fractional Differenced Gaussian Processes
    Olivares, G.
    Teferle, F. N.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (09) : 2405 - 2412
  • [43] Markov Chain Monte Carlo (MCMC) methods for parameter estimation of a novel hybrid redundant robot
    Wang, Yongbo
    Wu, Huapeng
    Handroos, Heikki
    FUSION ENGINEERING AND DESIGN, 2011, 86 (9-11) : 1863 - 1867
  • [44] Reliability Estimation Using Markov Chain Monte Carlo-Based Tail Modeling
    Bayrak, Gamze
    Acar, Erdem
    AIAA JOURNAL, 2018, 56 (03) : 1211 - 1224
  • [45] Monte Carlo Markov Chain parameter estimation in semi-analytic models of galaxy formation
    Henriques, Bruno M. B.
    Thomas, Peter A.
    Oliver, Seb
    Roseboom, Isaac
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 396 (01) : 535 - 547
  • [46] Structural physical parameter identification using Bayesian estimation with Markov Chain Monte Carlo method
    Li, Xiao-Hua
    Xie, Li-Li
    Gong, Mao-Sheng
    Zhendong yu Chongji/Journal of Vibration and Shock, 2010, 29 (04): : 59 - 63
  • [47] Parameter estimation for X-ray scattering analysis with Hamiltonian Markov Chain Monte Carlo
    Jiang, Zhang
    Wang, Jin
    Tirrell, Matthew, V
    de Pablo, Juan J.
    Chen, Wei
    JOURNAL OF SYNCHROTRON RADIATION, 2022, 29 : 721 - 731
  • [48] MARKOV CHAIN MONTE CARLO INFERENCE FOR PROBABILISTIC LATENT TENSOR FACTORIZATION
    Simsekli, Umut
    Cemgil, A. Taylan
    2012 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2012,
  • [49] Limitations of Markov chain Monte Carlo algorithms for Bayesian inference of phylogeny
    Mossel, Elchanan
    Vigoda, Eric
    ANNALS OF APPLIED PROBABILITY, 2006, 16 (04): : 2215 - 2234
  • [50] Soft Evidential Update via Markov Chain Monte Carlo Inference
    Jain, Dominik
    Beetz, Michael
    KI 2010: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2010, 6359 : 280 - 290