A Markov Chain Monte Carlo technique for parameter estimation and inference in pesticide fate and transport modeling

被引:11
|
作者
Boulange, Julien [1 ]
Watanabe, Hirozumi [1 ]
Akai, Shinpei [1 ]
机构
[1] Tokyo Univ Agr & Technol, Tokyo, Japan
关键词
Rice paddy; Pesticide fate and transport; Markov Chain Monte Carlo (MCMC); Inverse modeling; PCPF-1; model; BAYESIAN-INFERENCE; SIMULATION-MODEL; RISK-ASSESSMENT; RICE PADDIES; SURFACE SOIL; UNCERTAINTY; WATER; RUNOFF; CONVERGENCE; EXPOSURE;
D O I
10.1016/j.ecolmodel.2017.07.011
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
A Bayesian method involving Markov Chain Monte Carlo (MCMC) technique was implemented into a pesticide fate and transport model to estimate the best input parameter ranges while considering uncertainties included in both the observed pesticide concentrations and in the model. The methodology used for integrating the MCMC technique into a pollutant fate and transport models was detailed. The uncertainties encompassed in the dissolution rate and in the adsorption coefficient of the herbicide mefenacet were greatly reduced by the MCMC simulations. In addition, an optimal set of input parameters extracted from the MCMC simulations accurately reproduced mefenacet concentrations in paddy water and paddy soil as compared to the original published dataset. Consequently, by simultaneously optimizing multiple parameters of environmental models and conducting uncertainty analysis, MCMC technique exhibits powerful capability for improving the reliability and accuracy of computer models. The main strengths of the MCMC methodology are: (1) the consideration of uncertainties from both input parameters and observations and (2) the prior distributions of the input parameters which can be reformulate when additional knowledge is available. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:270 / 278
页数:9
相关论文
共 50 条
  • [21] Markov Chain Monte Carlo Methods for Parameter Estimation in Multidimensional Continuous Time Markov Switching Models
    Hahn, Markus
    Fruehwirth-Schnatter, Sylvia
    Sass, Joern
    JOURNAL OF FINANCIAL ECONOMETRICS, 2010, 8 (01) : 88 - 121
  • [22] Application of the ecosystem model and Markov Chain Monte Carlo for parameter estimation and productivity prediction
    Li, Weizhong
    Peng, Changhui
    Zhou, Xiaolu
    Sun, Jianfeng
    Zhu, Qiuan
    Wu, Haibin
    St-Onge, Benoit
    ECOSPHERE, 2015, 6 (12):
  • [23] Markov Chain Monte Carlo (MCMC) Method for Parameter Estimation of Nonlinear Dynamical Systems
    Rehman, M. Javvad Ur
    Dass, Sarat Chandra
    Asirvadam, Vijanth Sagayan
    2015 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING APPLICATIONS (ICSIPA), 2015, : 7 - 10
  • [24] Markov Chain, Monte Carlo global search and integration for Bayesian, GPS, parameter estimation
    Progri, Ilir
    Bromberg, Matthew
    Wang, Jinling
    Navigation, Journal of the Institute of Navigation, 2009, 56 (03): : 195 - 204
  • [25] Probabilistic parameter estimation of activated sludge processes using Markov Chain Monte Carlo
    Sharifi, Soroosh
    Murthy, Sudhir
    Takacs, Imre
    Massoudieh, Arash
    WATER RESEARCH, 2014, 50 : 254 - 266
  • [26] Markov chain Monte Carlo approach to parameter estimation in the FitzHugh-Nagumo model
    Jensen, Anders Chr.
    Ditlevsen, Susanne
    Kessler, Mathieu
    Papaspiliopoulos, Omiros
    PHYSICAL REVIEW E, 2012, 86 (04):
  • [27] CIGALEMC: GALAXY PARAMETER ESTIMATION USING A MARKOV CHAIN MONTE CARLO APPROACH WITH CIGALE
    Serra, Paolo
    Amblard, Alexandre
    Temi, Pasquale
    Burgarella, Denis
    Giovannoli, Elodie
    Buat, Veronique
    Noll, Stefan
    Im, Stephen
    ASTROPHYSICAL JOURNAL, 2011, 740 (01):
  • [28] Complex-valued Bayesian parameter estimation via Markov chain Monte Carlo
    Liu, Ying
    Li, Chunguang
    INFORMATION SCIENCES, 2016, 326 : 334 - 349
  • [29] Parameter Estimation of an Electrohydraulic Servo System Using a Markov Chain Monte Carlo Method
    Liu, Junhong
    Wu, Huapeng
    Handroos, Heikki
    Haario, Heikki
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2013, 135 (01):
  • [30] Predictive Inference Based on Markov Chain Monte Carlo Output
    Krueger, Fabian
    Lerch, Sebastian
    Thorarinsdottir, Thordis
    Gneiting, Tilmann
    INTERNATIONAL STATISTICAL REVIEW, 2021, 89 (02) : 274 - 301