A Markov Chain Monte Carlo technique for parameter estimation and inference in pesticide fate and transport modeling

被引:11
|
作者
Boulange, Julien [1 ]
Watanabe, Hirozumi [1 ]
Akai, Shinpei [1 ]
机构
[1] Tokyo Univ Agr & Technol, Tokyo, Japan
关键词
Rice paddy; Pesticide fate and transport; Markov Chain Monte Carlo (MCMC); Inverse modeling; PCPF-1; model; BAYESIAN-INFERENCE; SIMULATION-MODEL; RISK-ASSESSMENT; RICE PADDIES; SURFACE SOIL; UNCERTAINTY; WATER; RUNOFF; CONVERGENCE; EXPOSURE;
D O I
10.1016/j.ecolmodel.2017.07.011
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
A Bayesian method involving Markov Chain Monte Carlo (MCMC) technique was implemented into a pesticide fate and transport model to estimate the best input parameter ranges while considering uncertainties included in both the observed pesticide concentrations and in the model. The methodology used for integrating the MCMC technique into a pollutant fate and transport models was detailed. The uncertainties encompassed in the dissolution rate and in the adsorption coefficient of the herbicide mefenacet were greatly reduced by the MCMC simulations. In addition, an optimal set of input parameters extracted from the MCMC simulations accurately reproduced mefenacet concentrations in paddy water and paddy soil as compared to the original published dataset. Consequently, by simultaneously optimizing multiple parameters of environmental models and conducting uncertainty analysis, MCMC technique exhibits powerful capability for improving the reliability and accuracy of computer models. The main strengths of the MCMC methodology are: (1) the consideration of uncertainties from both input parameters and observations and (2) the prior distributions of the input parameters which can be reformulate when additional knowledge is available. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:270 / 278
页数:9
相关论文
共 50 条
  • [31] Markov Chain Monte Carlo and Variational Inference: Bridging the Gap
    Salimans, Tim
    Kingma, Diederik P.
    Welling, Max
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1218 - 1226
  • [32] Tree Bridging Markov Chain Monte Carlo for Ancestral Inference
    Heine, K.
    Beskos, A.
    De Iorio, M.
    Jasra, A.
    HUMAN HEREDITY, 2015, 80 (03) : 113 - 113
  • [33] Parameter Identification in Degradation Modeling by Reversible-Jump Markov Chain Monte Carlo
    Zio, Enrico
    Zoia, Andrea
    IEEE TRANSACTIONS ON RELIABILITY, 2009, 58 (01) : 123 - 131
  • [34] Markov chain Monte Carlo exact inference for social networks
    McDonald, John W.
    Smith, Peter W. F.
    Forster, Jonathan J.
    SOCIAL NETWORKS, 2007, 29 (01) : 127 - 136
  • [35] Transport Map Accelerated Markov Chain Monte Carlo
    Parno, Matthew D.
    Marzouk, Youssef M.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2018, 6 (02): : 645 - 682
  • [36] Stratified Markov Chain Monte Carlo Light Transport
    Gruson, Adrien
    West, Rex
    Hachisuka, Toshiya
    COMPUTER GRAPHICS FORUM, 2020, 39 (02) : 351 - 362
  • [37] Markov chain Monte Carlo estimation of quantum states
    DiGuglielmo, James
    Messenger, Chris
    Fiurasek, Jaromir
    Hage, Boris
    Samblowski, Aiko
    Schmidt, Tabea
    Schnabel, Roman
    PHYSICAL REVIEW A, 2009, 79 (03):
  • [38] Benchmark estimation for Markov chain Monte Carlo samples
    Guha, S
    MacEachern, SN
    Peruggia, M
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2004, 13 (03) : 683 - 701
  • [39] On quantile estimation and Markov chain Monte Carlo convergence
    Brooks, SP
    Roberts, GO
    BIOMETRIKA, 1999, 86 (03) : 710 - 717
  • [40] Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo
    Golightly, Andrew
    Wilkinson, Darren J.
    INTERFACE FOCUS, 2011, 1 (06) : 807 - 820