A Markov Chain Monte Carlo technique for parameter estimation and inference in pesticide fate and transport modeling

被引:11
|
作者
Boulange, Julien [1 ]
Watanabe, Hirozumi [1 ]
Akai, Shinpei [1 ]
机构
[1] Tokyo Univ Agr & Technol, Tokyo, Japan
关键词
Rice paddy; Pesticide fate and transport; Markov Chain Monte Carlo (MCMC); Inverse modeling; PCPF-1; model; BAYESIAN-INFERENCE; SIMULATION-MODEL; RISK-ASSESSMENT; RICE PADDIES; SURFACE SOIL; UNCERTAINTY; WATER; RUNOFF; CONVERGENCE; EXPOSURE;
D O I
10.1016/j.ecolmodel.2017.07.011
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
A Bayesian method involving Markov Chain Monte Carlo (MCMC) technique was implemented into a pesticide fate and transport model to estimate the best input parameter ranges while considering uncertainties included in both the observed pesticide concentrations and in the model. The methodology used for integrating the MCMC technique into a pollutant fate and transport models was detailed. The uncertainties encompassed in the dissolution rate and in the adsorption coefficient of the herbicide mefenacet were greatly reduced by the MCMC simulations. In addition, an optimal set of input parameters extracted from the MCMC simulations accurately reproduced mefenacet concentrations in paddy water and paddy soil as compared to the original published dataset. Consequently, by simultaneously optimizing multiple parameters of environmental models and conducting uncertainty analysis, MCMC technique exhibits powerful capability for improving the reliability and accuracy of computer models. The main strengths of the MCMC methodology are: (1) the consideration of uncertainties from both input parameters and observations and (2) the prior distributions of the input parameters which can be reformulate when additional knowledge is available. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:270 / 278
页数:9
相关论文
共 50 条
  • [1] Parameter estimation by a Markov chain Monte Carlo technique for the Candy model
    Descombes, X
    van Lieshout, MNM
    Stoica, R
    Zerubia, J
    2001 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING PROCEEDINGS, 2001, : 22 - 25
  • [2] A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall-runoff modeling
    Bates, BC
    Campbell, EP
    WATER RESOURCES RESEARCH, 2001, 37 (04) : 937 - 947
  • [3] Fast and reliable Markov chain Monte Carlo technique for cosmological parameter estimation
    Dunkley, J
    Bucher, M
    Ferreira, PG
    Moodley, K
    Skordis, C
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2005, 356 (03) : 925 - 936
  • [4] Parameter Estimation in Population Balance through Bayesian Technique Markov Chain Monte Carlo
    Moura, Carlos H. R.
    Viegas, Bruno M.
    Tavares, Maria R. M.
    Macedo, Emanuel N.
    Estumano, Diego C.
    Quaresma, Joao N. N.
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2021, 7 (02): : 890 - 901
  • [5] Markov Chain Monte Carlo Used in Parameter Inference of Magnetic Resonance Spectra
    Hock, Kiel
    Earle, Keith
    ENTROPY, 2016, 18 (02):
  • [6] Logistic Growth Modeling with Markov Chain Monte Carlo Estimation
    Choi, Jaehwa
    Chen, Jinsong
    Harring, Jeffery R.
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2019, 18 (01) : 2 - 18
  • [8] An Improved Markov Chain Monte Carlo Scheme for Parameter Estimation Analysis
    Liu, Fang
    Pan, Hao
    Jiang, Desheng
    2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL I, PROCEEDINGS, 2008, : 702 - +
  • [9] Parameter estimation in deformable models using Markov chain Monte Carlo
    Chalana, V
    Haynor, DR
    Sampson, PD
    Kim, YM
    IMAGE PROCESSING - MEDICAL IMAGING 1997, PTS 1 AND 2, 1997, 3034 : 287 - 298
  • [10] Seismic parameter estimation using Markov Chain Monte Carlo Method
    Zhang, Guang-Zhi
    Wang, Dan-Yang
    Yin, Xing-Yao
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2011, 46 (04): : 605 - 609