Musielak-Orlicz Hardy Spaces

被引:91
|
作者
Yang, Dachun [1 ]
Liang, Yiyu [2 ]
Luong Dang Ky [3 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing, Peoples R China
[2] Beijing Jiaotong Univ, Sch Sci, Dept Math, Beijing, Peoples R China
[3] Univ Quy Nhon, Dept Math, Quy Nhon, Vietnam
关键词
D O I
10.1007/978-3-319-54361-1_1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this chapter, we first recall the notion of growth functions, establish some technical lemmas and introduce the Musielak-Orlicz Hardy space H-phi(R-n) which generalize the Orlicz-Hardy space of Janson and the weighted Hardy space of Garcia-Cuerva, Stromberg and Torchinsky. Here, phi : R-n x [0,infinity) -> [0,infinity) is a function such that phi(x, .) is an Orlicz function and phi(., t) is a Muckenhoupt A(infinity()R(n)) weight uniformly in t is an element of (0, infinity). A Schwartz distribution f belongs to H-phi(.,H-.) (R-n) if and only if its non-tangential grand maximal function f* is such that x -> phi(x, broken vertical bar f*(x)broken vertical bar) is integrable. Such a space arises naturally for instance in the description of the product of functions in (HRn))-R-1( and BMO(R-n), respectively. We characterize these spaces via the grand maximal function and establish their atomic decompositions. We also characterize their dual spaces. The class of pointwise multipliers for BMO(R-n) characterized by Nakai and Yabuta can be seen as the dual space of (LRn)-R-1() + H-phi(R-n), where phi(x,t) = t/log(e + broken vertical bar x broken vertical bar) + log(e + t), for all x is an element of R-n, for all t is an element of (0, infinity). (1.1)
引用
收藏
页码:1 / 57
页数:57
相关论文
共 50 条
  • [41] MOLECULAR CHARACTERIZATION OF ANISOTROPIC WEAK MUSIELAK-ORLICZ HARDY SPACES AND THEIR APPLICATIONS
    Sun, Ruirui
    Li, Jinxia
    Li, Baode
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (05) : 2377 - 2395
  • [42] New molecular characterizations of anisotropic Musielak-Orlicz Hardy spaces and their applications
    Liu, Jun
    Haroske, Dorothee D.
    Yang, Dachun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (02) : 1341 - 1366
  • [43] A new molecular characterization of diagonal anisotropic Musielak-Orlicz Hardy spaces
    Liao, Minfeng
    Li, Jinxia
    Li, Bo
    Li, Baode
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 166
  • [44] REAL-VARIABLE CHARACTERIZATIONS OF MUSIELAK-ORLICZ HARDY SPACES ON SPACES OF HOMOGENEOUS TYPE
    Fu, Xing
    Ma, Tao
    Yang, Dachun
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 : 343 - 410
  • [45] The Daugavet property in the Musielak-Orlicz spaces
    Kaminska, Anna
    Kubiak, Damian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 427 (02) : 873 - 898
  • [46] Sobolev inequalities for Musielak-Orlicz spaces
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    MANUSCRIPTA MATHEMATICA, 2018, 155 (1-2) : 209 - 227
  • [47] Musielak-Orlicz Campanato spaces and applications
    Liang, Yiyu
    Yang, Dachun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 406 (01) : 307 - 322
  • [48] ON MULTIFUNCTIONALS IN THE MUSIELAK-ORLICZ SPACES OF MULTIFUNCTIONS
    KASPERSKI, A
    MATHEMATISCHE NACHRICHTEN, 1994, 168 : 161 - 169
  • [49] A COMBINATORIAL APPROACH TO MUSIELAK-ORLICZ SPACES
    Prochno, Joscha
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2013, 7 (01): : 132 - 141
  • [50] Smoothness of the Orlicz norm in Musielak-Orlicz function spaces
    Vigelis, Rui F.
    Cavaleante, Charles C.
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (8-9) : 1025 - 1041