Musielak-Orlicz Hardy Spaces

被引:91
|
作者
Yang, Dachun [1 ]
Liang, Yiyu [2 ]
Luong Dang Ky [3 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing, Peoples R China
[2] Beijing Jiaotong Univ, Sch Sci, Dept Math, Beijing, Peoples R China
[3] Univ Quy Nhon, Dept Math, Quy Nhon, Vietnam
关键词
D O I
10.1007/978-3-319-54361-1_1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this chapter, we first recall the notion of growth functions, establish some technical lemmas and introduce the Musielak-Orlicz Hardy space H-phi(R-n) which generalize the Orlicz-Hardy space of Janson and the weighted Hardy space of Garcia-Cuerva, Stromberg and Torchinsky. Here, phi : R-n x [0,infinity) -> [0,infinity) is a function such that phi(x, .) is an Orlicz function and phi(., t) is a Muckenhoupt A(infinity()R(n)) weight uniformly in t is an element of (0, infinity). A Schwartz distribution f belongs to H-phi(.,H-.) (R-n) if and only if its non-tangential grand maximal function f* is such that x -> phi(x, broken vertical bar f*(x)broken vertical bar) is integrable. Such a space arises naturally for instance in the description of the product of functions in (HRn))-R-1( and BMO(R-n), respectively. We characterize these spaces via the grand maximal function and establish their atomic decompositions. We also characterize their dual spaces. The class of pointwise multipliers for BMO(R-n) characterized by Nakai and Yabuta can be seen as the dual space of (LRn)-R-1() + H-phi(R-n), where phi(x,t) = t/log(e + broken vertical bar x broken vertical bar) + log(e + t), for all x is an element of R-n, for all t is an element of (0, infinity). (1.1)
引用
收藏
页码:1 / 57
页数:57
相关论文
共 50 条
  • [21] DUAL SPACES AND WAVELET CHARACTERIZATIONS OF ANISOTROPIC MUSIELAK-ORLICZ HARDY SPACES
    Liu, Jun
    Haroske, Dorothee D.
    Yang, Dachun
    Yuan, Wen
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2020, 19 (01) : 106 - 131
  • [22] INTRINSIC SQUARE FUNCTION CHARACTERIZATIONS OF MUSIELAK-ORLICZ HARDY SPACES
    Liang, Yiyu
    Yang, Dachun
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (05) : 3225 - 3256
  • [23] Molecular Characterization of Anisotropic Musielak-Orlicz Hardy Spaces and Their Applications
    Li, Bao De
    Fan, Xing Ya
    Fu, Zun Wei
    Yang, Da Chun
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (11) : 1391 - 1414
  • [24] Intrinsic Square Function Characterizations of Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 167 - 193
  • [25] ESTIMATES FOR PARAMETRIC MARCINKIEWICZ INTEGRALS ON MUSIELAK-ORLICZ HARDY SPACES
    Liu, Xiong
    Li, Baode
    Qiu, Xiaoli
    Li, Bo
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (04): : 1117 - 1147
  • [26] NEW WEAK MARTINGALE HARDY SPACES OF MUSIELAK-ORLICZ TYPE
    Yang, Anming
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2017, 42 (02) : 847 - 857
  • [27] Anisotropic weak Hardy spaces of Musielak-Orlicz type and their applications
    Zhang, Hui
    Qi, Chunyan
    Li, Baode
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (04) : 993 - 1022
  • [28] Boundedness of fractional integral operators on Musielak-Orlicz Hardy spaces
    Huy, Duong Quoc
    Ky, Luong Dang
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (12) : 2340 - 2354
  • [29] Anisotropic weak Hardy spaces of Musielak-Orlicz type and their applications
    Hui Zhang
    Chunyan Qi
    Baode Li
    Frontiers of Mathematics in China, 2017, 12 : 993 - 1022
  • [30] Atomic and Wavelet Characterization of Musielak-Orlicz Hardy Spaces for Generalized Orlicz Functions
    Izuki, Mitsuo
    Nakai, Eiichi
    Sawano, Yoshihiro
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2022, 94 (01)