Musielak-Orlicz Hardy Spaces

被引:91
|
作者
Yang, Dachun [1 ]
Liang, Yiyu [2 ]
Luong Dang Ky [3 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing, Peoples R China
[2] Beijing Jiaotong Univ, Sch Sci, Dept Math, Beijing, Peoples R China
[3] Univ Quy Nhon, Dept Math, Quy Nhon, Vietnam
关键词
D O I
10.1007/978-3-319-54361-1_1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this chapter, we first recall the notion of growth functions, establish some technical lemmas and introduce the Musielak-Orlicz Hardy space H-phi(R-n) which generalize the Orlicz-Hardy space of Janson and the weighted Hardy space of Garcia-Cuerva, Stromberg and Torchinsky. Here, phi : R-n x [0,infinity) -> [0,infinity) is a function such that phi(x, .) is an Orlicz function and phi(., t) is a Muckenhoupt A(infinity()R(n)) weight uniformly in t is an element of (0, infinity). A Schwartz distribution f belongs to H-phi(.,H-.) (R-n) if and only if its non-tangential grand maximal function f* is such that x -> phi(x, broken vertical bar f*(x)broken vertical bar) is integrable. Such a space arises naturally for instance in the description of the product of functions in (HRn))-R-1( and BMO(R-n), respectively. We characterize these spaces via the grand maximal function and establish their atomic decompositions. We also characterize their dual spaces. The class of pointwise multipliers for BMO(R-n) characterized by Nakai and Yabuta can be seen as the dual space of (LRn)-R-1() + H-phi(R-n), where phi(x,t) = t/log(e + broken vertical bar x broken vertical bar) + log(e + t), for all x is an element of R-n, for all t is an element of (0, infinity). (1.1)
引用
收藏
页码:1 / 57
页数:57
相关论文
共 50 条
  • [31] The Musielak-Orlicz Herz spaces
    Dong, Baohua
    Li, Yu
    Xu, Jingshi
    NEW YORK JOURNAL OF MATHEMATICS, 2023, 29 : 1287 - 1301
  • [32] ON COMPLETENESS OF MUSIELAK-ORLICZ SPACES
    WISLA, M
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1989, 10 (03) : 292 - 300
  • [33] Musielak-Orlicz Campanato Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 145 - 166
  • [34] INTRINSIC SQUARE FUNCTION CHARACTERIZATIONS OF WEAK MUSIELAK-ORLICZ HARDY SPACES
    Yan, Xianjie
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2019, 13 (04) : 969 - 988
  • [35] New real-variable characterizations of Musielak-Orlicz Hardy spaces
    Liang, Yiyu
    Huang, Jizheng
    Yang, Dachun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 395 (01) : 413 - 428
  • [36] Boundedness of Marcinkiewicz integrals with rough kernels on Musielak-Orlicz Hardy spaces
    Bo Li
    Minfeng Liao
    Baode Li
    Journal of Inequalities and Applications, 2017
  • [37] ATOMIC CHARACTERIZATIONS OF WEAK MARTINGALE MUSIELAK-ORLICZ HARDY SPACES AND THEIR APPLICATIONS
    Xie, Guangheng
    Yang, Dachun
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2019, 13 (04): : 884 - 917
  • [38] Boundedness of Marcinkiewicz integrals with rough kernels on Musielak-Orlicz Hardy spaces
    Li, Bo
    Liao, Minfeng
    Li, Baode
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [39] New Hardy Spaces of Musielak-Orlicz Type and Boundedness of Sublinear Operators
    Luong Dang Ky
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2014, 78 (01) : 115 - 150
  • [40] Real-Variable Theory of Musielak-Orlicz Hardy Spaces Preface
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : V - +