On Finding and Enumerating Maximal and Maximum k-Partite Cliques in k-Partite Graphs

被引:10
|
作者
Phillips, Charles A. [1 ]
Wang, Kai [2 ]
Baker, Erich J. [3 ]
Bubier, Jason A. [4 ]
Chesler, Elissa J. [4 ]
Langston, Michael A. [1 ]
机构
[1] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA
[2] Georgia Southern Univ, Dept Comp Sci, Statesboro, GA 30460 USA
[3] Baylor Univ, Dept Comp Sci, Waco, TX 76798 USA
[4] Jackson Lab, 600 Main St, Bar Harbor, ME 04609 USA
关键词
graph algorithms; multipartite graphs; maximal cliques; dense subgraph enumeration; GENEWEAVER;
D O I
10.3390/a12010023
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Let k denote an integer greater than 2, let G denote a k-partite graph, and let S denote the set of all maximal k-partite cliques in G. Several open questions concerning the computation of S are resolved. A straightforward and highly-scalable modification to the classic recursive backtracking approach of Bron and Kerbosch is first described and shown to run in O(3(n/3)) time. A series of novel graph constructions is then used to prove that this bound is best possible in the sense that it matches an asymptotically tight upper limit on vertical bar S vertical bar. The task of identifying a vertex-maximum element of S is also considered and, in contrast with the k = 2 case, shown to be NP-hard for every k >= 3. A special class of k-partite graphs that arises in the context of functional genomics and other problem domains is studied as well and shown to be more readily solvable via a polynomial-time transformation to bipartite graphs. Applications, limitations, potentials for faster methods, heuristic approaches, and alternate formulations are also addressed.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Total minus domination in k-partite graphs
    Kang, Liying
    Shan, Erfang
    Caccetta, Louis
    DISCRETE MATHEMATICS, 2006, 306 (15) : 1771 - 1775
  • [22] GENERATING FUNCTION FOR REPRESENTATIONS OF GRAPHS BY k-PARTITE GRAPHS
    Ganopolsky, R. M.
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2016, 31 (01): : 5 - 12
  • [23] KINGS IN K-PARTITE TOURNAMENTS
    PETROVIC, V
    THOMASSEN, C
    DISCRETE MATHEMATICS, 1991, 98 (03) : 237 - 238
  • [24] Minus domination number in k-partite graphs
    Kang, LY
    Kim, HK
    Sohn, MY
    DISCRETE MATHEMATICS, 2004, 277 (1-3) : 295 - 300
  • [25] On factors of independent transversals in k-partite graphs
    Yuster, Raphael
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (04):
  • [26] ALMOST PERFECT MATCHINGS IN k-PARTITE k-GRAPHS
    Lu, Hongliang
    Wang, Yan
    Yu, Xingxing
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (01) : 522 - 533
  • [27] CLICKS: Mining subspace clusters in categorical data via K-partite maximal cliques
    Zaki, MJ
    Peters, M
    ICDE 2005: 21ST INTERNATIONAL CONFERENCE ON DATA ENGINEERING, PROCEEDINGS, 2005, : 355 - 356
  • [28] RESTRICTED K-PARTITE PARTITIONS
    ROSELLE, DP
    MATHEMATISCHE NACHRICHTEN, 1966, 32 (3-4) : 139 - &
  • [29] A note on prime labeling k-partite k-graphs
    Hamm, Arran
    Hamm, Jessica
    Way, Alan
    INVOLVE, A JOURNAL OF MATHEMATICS, 2022, 15 (02): : 233 - 239
  • [30] Optimal strong (k, d)-orientation of complete k-partite graphs
    Miao, Huifang
    Guo, Xiaofeng
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (08) : 1729 - 1736