Total minus domination in k-partite graphs

被引:9
|
作者
Kang, Liying [1 ]
Shan, Erfang
Caccetta, Louis
机构
[1] Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China
[2] Curtin Univ Technol, Sch Math & Stat, Perth, WA 845, Australia
基金
中国国家自然科学基金;
关键词
domination; minus domination; total minus domination; k-partite graph;
D O I
10.1016/j.disc.2006.03.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A function f defined on the vertices of a graph G = (V, E), f : V -> {-1, 0, 1} is a total minus dominating function (TMDF) if the sum of its values over any open neighborhood is at least one. The weight of a TMDF is the sum of its function values over all vertices. The total minus domination number, denoted by gamma(-)(t) (G), of G is the minimum weight of a TMDF on G. In this paper, a sharp lower bound on gamma(-)(t) of k-partite graphs is given. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1771 / 1775
页数:5
相关论文
共 50 条
  • [1] Minus domination number in k-partite graphs
    Kang, LY
    Kim, HK
    Sohn, MY
    DISCRETE MATHEMATICS, 2004, 277 (1-3) : 295 - 300
  • [2] On the existence of k-partite or Kp-free total domination edge-critical graphs
    Haynes, Teresa W.
    Henning, Michael A.
    van der Merwe, Lucas C.
    Yeo, Anders
    DISCRETE MATHEMATICS, 2011, 311 (13) : 1142 - 1149
  • [3] On Finding and Enumerating Maximal and Maximum k-Partite Cliques in k-Partite Graphs
    Phillips, Charles A.
    Wang, Kai
    Baker, Erich J.
    Bubier, Jason A.
    Chesler, Elissa J.
    Langston, Michael A.
    ALGORITHMS, 2019, 12 (01)
  • [4] Hamiltonian cycles in k-partite graphs
    DeBiasio, Louis
    Krueger, Robert A.
    Pritikin, Dan
    Thompson, Eli
    JOURNAL OF GRAPH THEORY, 2020, 94 (01) : 92 - 112
  • [5] HAMILTONICITY IN BALANCED K-PARTITE GRAPHS
    CHEN, GT
    FAUDREE, RJ
    GOULD, RJ
    JACOBSON, MS
    LESNIAK, L
    GRAPHS AND COMBINATORICS, 1995, 11 (03) : 221 - 231
  • [6] THE MEDIAN PROBLEM ON k-PARTITE GRAPHS
    Pravas, Karuvachery
    Vijayakumar, Ambat
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2015, 35 (03) : 439 - 446
  • [7] On degree sets in k-partite graphs
    Naikoo, T. A.
    Samee, U.
    Pirzada, S.
    Rather, Bilal A.
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2020, 12 (02) : 251 - 259
  • [8] Chorded Pancyclicity in k-Partite Graphs
    Ferrero, Daniela
    Lesniak, Linda
    GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1565 - 1580
  • [9] Label Propagation on K-partite Graphs
    Ding, Chris
    Li, Tao
    Wang, Dingding
    EIGHTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, PROCEEDINGS, 2009, : 273 - +
  • [10] Chorded Pancyclicity in k-Partite Graphs
    Daniela Ferrero
    Linda Lesniak
    Graphs and Combinatorics, 2018, 34 : 1565 - 1580