On Finding and Enumerating Maximal and Maximum k-Partite Cliques in k-Partite Graphs

被引:10
|
作者
Phillips, Charles A. [1 ]
Wang, Kai [2 ]
Baker, Erich J. [3 ]
Bubier, Jason A. [4 ]
Chesler, Elissa J. [4 ]
Langston, Michael A. [1 ]
机构
[1] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA
[2] Georgia Southern Univ, Dept Comp Sci, Statesboro, GA 30460 USA
[3] Baylor Univ, Dept Comp Sci, Waco, TX 76798 USA
[4] Jackson Lab, 600 Main St, Bar Harbor, ME 04609 USA
关键词
graph algorithms; multipartite graphs; maximal cliques; dense subgraph enumeration; GENEWEAVER;
D O I
10.3390/a12010023
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Let k denote an integer greater than 2, let G denote a k-partite graph, and let S denote the set of all maximal k-partite cliques in G. Several open questions concerning the computation of S are resolved. A straightforward and highly-scalable modification to the classic recursive backtracking approach of Bron and Kerbosch is first described and shown to run in O(3(n/3)) time. A series of novel graph constructions is then used to prove that this bound is best possible in the sense that it matches an asymptotically tight upper limit on vertical bar S vertical bar. The task of identifying a vertex-maximum element of S is also considered and, in contrast with the k = 2 case, shown to be NP-hard for every k >= 3. A special class of k-partite graphs that arises in the context of functional genomics and other problem domains is studied as well and shown to be more readily solvable via a polynomial-time transformation to bipartite graphs. Applications, limitations, potentials for faster methods, heuristic approaches, and alternate formulations are also addressed.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Pairwise Test Set Calculation using k-partite Graphs
    Salecker, Elke
    Glesner, Sabine
    2010 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE, 2010,
  • [42] K-Partite RNA Secondary Structures
    Jiang, Minghui
    Tejada, Pedro J.
    Lasisi, Ramoni O.
    Cheng, Shanhong
    Fechser, D. Scott
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2010, 17 (07) : 915 - 925
  • [43] PACKING TREES INTO COMPLETE K-PARTITE GRAPH
    Peng, Yanling
    Wang, Hong
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (02) : 345 - 350
  • [44] THE EXPONENTIAL GENERATING FUNCTIONS FOR SEQUENCE OF THE NUMBERS OF k-PARTITE GRAPHS
    Ganopolsky, R. M.
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2015, 27 (01): : 84 - 91
  • [45] GENERALIZATION OF KERNIGHAN METHOD OF FINDING LOW-COST COMPLETE K-PARTITE GRAPHS
    KOZLOWSK.J
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES TECHNIQUES, 1974, 22 (7-8): : 693 - 697
  • [46] Matchings in k-partite k-uniform hypergraphs
    Han, Jie
    Zang, Chuanyun
    Zhao, Yi
    JOURNAL OF GRAPH THEORY, 2020, 95 (01) : 34 - 58
  • [47] Building k-partite association graphs for finding recommendation patterns from questionnaire data
    Maduako, Iyke
    Gong, Yaqi
    Wachowicz, Monica
    TRANSACTIONS IN GIS, 2021, 25 (05) : 2641 - 2659
  • [48] High Functional Coherence in k-Partite Protein Cliques of Protein Interaction Networks
    Liu, Qian
    Chen, Yi-Ping Phoebe
    Li, Jinyan
    2009 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2009, : 111 - +
  • [49] On k-partite hypergraphs with the induced ε-density property
    Dudek, Andrzej
    DISCRETE MATHEMATICS, 2010, 310 (10-11) : 1524 - 1530
  • [50] Coarsening effects on k-partite network classification
    Althoff, Paulo Eduardo
    Valejo, Alan Demetrius Baria
    Faleiros, Thiago de Paulo
    APPLIED NETWORK SCIENCE, 2023, 8 (01)